

(Urban) flood management in Flanders ,Belgium

UK National Observers Group Meeting London, 16 April 2013

Johan Van Assel (Aquafin)

Contents

- Types and occurences of flooding
- Water and flood management
 - Rivers
 - Urban drainage
- Urban flood management and modelling
 - Traditional approach
 - Recent developments

Types and occurences of flooding

Water and flood management

Tidal flooding

Rough delineation of direct tidal zone of Scheldt River and tributaries

• Not (or not significantly) rainfall induced

DWE

INTERREG IVB

his project has received European Regional Development Funding brough INTERREG IV B.

• Along coastline (very rare)

• Along Scheldt river + major tributaries

- Critical situations (near flooding) can occur every couple of years
- Major floodings in 1953 / 1976 (dyke failures)

•Can cause floodings in upstream rivers or sewer systems

Fluvial flooding

Source : www.overstromingsvoorspeller.be

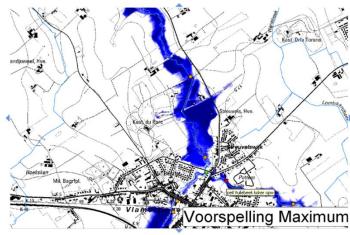
Source : www.hbvl.be

Source : www.standaard.be (Annelies Desmet)

•Rainfall induced (long to medium response time)

- Along non-tidal rivers and ditches
 Critical situations occur typically 1-3 times a year
 Several major floodings in past 10-15 years
- •Can cause floodings in upstream sewer systems

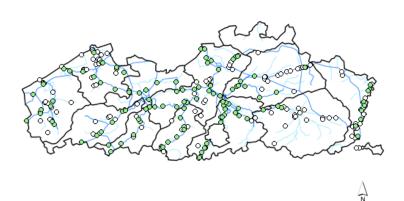
Flood management (tidalfluvial)


Type of flooding	Who ?	How ?	
Tidal (coastal)	MOW	Coastal Protection Plan	
Tidal (rivers)	MOW	 (Revised) Sigma Plan (dykes, controlled flood zones) Operational Early Warning System Flood Risk Management Plans (EU) 	
Fluvial (1st cat. rivers)	VMM	 Extending storage in natural valleys and artificial storage basins Hydraulic optimisation and maintenance Operational Early Warning System Flood Risk Management Plans (EU) 	
Fluvial (2nd cat. rivers)	Provinces	 Hydraulic optimisation and maintenance Commonly (2nd) or occasionally (3rd) integrated in VMM's EWS and in FRMPs 	
Fluvial (3rd cat. rivers)	Municipalities		

MOW : Flemish Ministry of Mobility and Public Works VMM : Flemish Environmental Agency

Early Warning systems (VMM)

www.overstromingsvoorspeller.be


a

Early Warning Systems (MOW)

Waterstanden, debieten en neerslaggegevens voor de laatste 10 dagen.

Kleur Betekenis Normaal: geen Groen overstromingen Pre-waakdrempel overschreden: verhoogde Gee waakzaamheid, geen overstromingen Waakdrempel overschreden: sterk verhoogde Oranie waakzaamheid, niet-kritieke overstromingen mogelijk Alarmdrempel overschreden: hoogste waakzaamheid, ood kritieke overstromingen mogelijk

Laatst bijgewerkt 04/04/13 10:15

www.waterstanden.be

0 10 km

Flood Prevention

Controlled Flood Zones

© Google Maps

Artifical Storage

INTERREG IV

Source : VMM (www.overstromingsvoorspeller.be)

> 600 ha polder u/s Antwerp

Storage and sediment catch u/s Leuven

Pluvial flooding

Source : www.demorgen.be © Belga

Source : www.demorgen.be © Belga

- Rainfall induced (short response time)
- Along sewer systems, small urban drainage elements (SUDS) and ditches
 - Typically occuring at short heavy intensity rainfall events ('summer storms')

INTERREG IV

 Floodings of different degrees of severity occur several times a year

Flood management (pluvial)

Where ?	Who ?	How ?
Trunk sewers	Aquafin	 Optimising hydraulic capacity and storage (basins) Hydrodynamic modelling (standard)
Local sewers, SUDS, ditches	Local sewer operators (incl. Aquafin) or Municipalities	 Optimising hydraulic capacity and storage (local solutions) Often integrated in trunk sewer hydrodynamic modelling Storm water management plans (under development)
Motorway (+ alike) drainage	MOW	Local storage solutions

Everything interacts ...

Source : Aquafin & Agiv ©

Watercourses (blue), municipality boundaries (yellow) and trunk sewers (other colours) indicated Not shown : local sewers, motorway drainage

Urban flood management and modelling

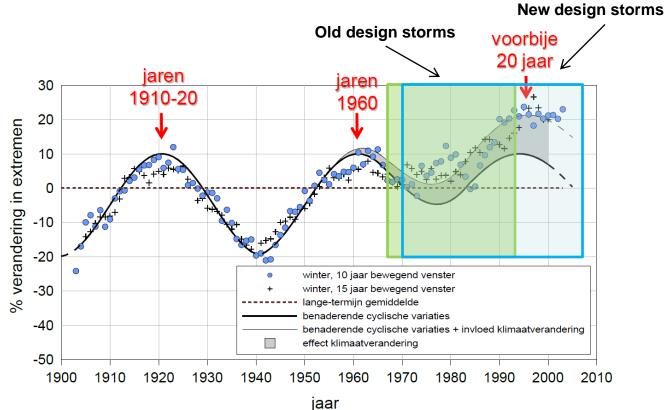
Evolution of sewerage design codes

Period	Applicable	Key points
1996 – 2012	'Old design code'	 Mainly traditional urban drainage design composite design storms (all durations between 10' and 48 hrs in one storm) hydraulic capacity based on T2 50 cm freeboard from flooding at T2 no flooding at T5 (T10 for 'highly sensitive urban areas')
2002 - 2012	Informal modifications to 'old code'	 Carry out additional sensitivity analysis for T10 and T20 Evaluate design at different design horizons and different assumptions for conceptual changes (transition combined → separate systems)
2013 -	'New design code'	 More focus on sustainable design Revised composite design storms taking into account more recent rainfall statistics No flooding allowed at T20 Focus on infiltration

Evolution of building permit regulations

Period	What ?	Key points
1999-2004	Informal advice	Promotion of rainwater tanks (rainwater harvesting and re-use) as source control measure
2004 – 2012	'Old urban planning regulation'	Imposed rules for source control measures : • rainwater tanks • infiltration • detention tanks (limited throughflow)
2013 -	'New urban planning regulation'	Revision of rules for source control measures : • larger rainwater tanks • more focus on infiltration More strict application
2003 –	'Water Proof'	Checklist for general evaluation of building projects/programmes in previously unbuilt areas.

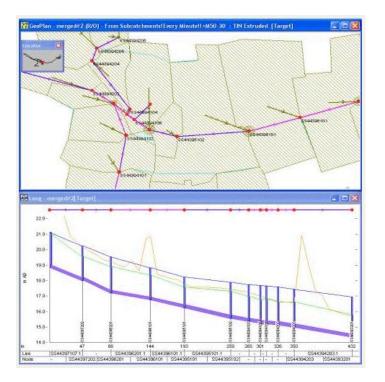
Source control measures

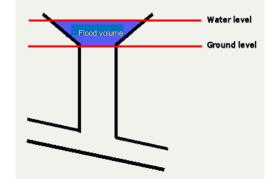


Source : VMM (Flemish Environmental Agency)

Design rainfall revision

(P. Willems, KU Leuven)


Evolution in urban flood modelling


modeling				
Traditional methods	New methods			
 Use of 'dummy' flood cones No detailed simulation of localised flooding possible Accuracy of model is unknown as soon as floods occur 	 Full 2D or hybrid 1D/2D modelling More realistic localisation of flooding and preferential flood pathways Better estimation of flood depths and velocities, flood pathways Possibility to model flood interactions between sewers and river flood zones 			

Flood modelling

Localised flooding in nodes

Dummy flood cones

INTERREG IVI

2D spatial flooding

Urban flooding EWS

- Based on river flooding EWS concepts ...
 - Realtime rainfall feed
 - Realtime hydraulic and flood calculation
 - Simulation update frequency = f (rainfall forecasts)
 - Hindcast simulation to evaluate model performance in realtime
 - Forecast simulation to produce early warnings

Urban flooding EWS (2)

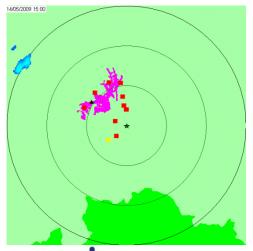
- ... but at the same time quite different
 - Response times much shorter
 - Local rainfall patterns more difficult to catch/predict
 - High resolution radar necessary
 - Never enough observations in sewers ...
 - Model flood calculations much harder to validate.

Choice of FloodWorks as EWS

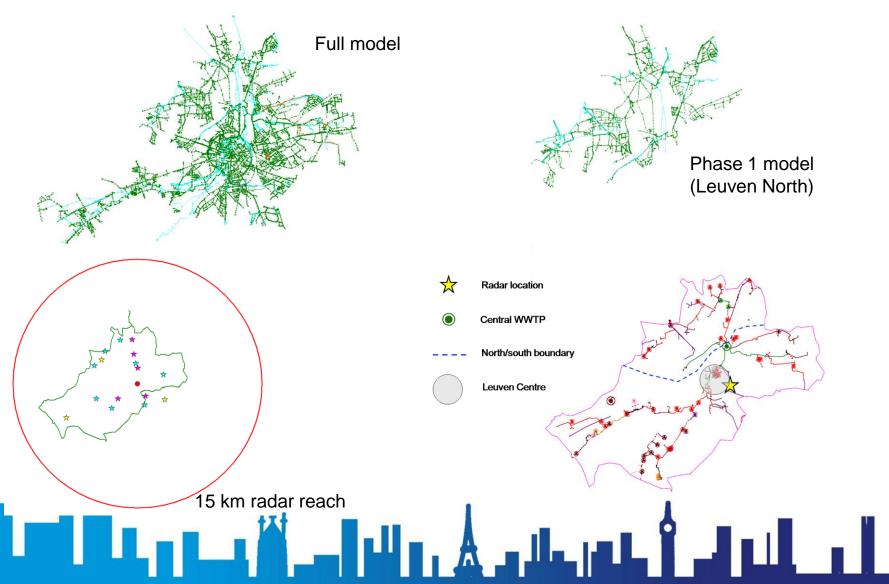
- InfoWorks CS • standard sewer modelling package in **Flanders**
- VMM EWS for rivers based on FloodWorks

Leuven radar (City LAWR)

- Small scale X-band radar
 - Based on marine technology)
 - 125x125 m² spatial resolution
 - 1 min time resolution
 - 15 km radius
- Operational since 2008
 - Longterm research collaboration KU Leuven-Aquafin
 - Use of data in FloodWorks currently under investigation
 - Data conversion
 - Data quality monitoring



Leuven radar (City LAWR)



25

Leuven model

Challenges

- Urban flood management
 - Develop integrated stormwater management plans with all (local) authorities involved
 - Climate change
 - Focus on flexible (adaptive) measures to include for additional flood risk
 - Preferably 'no regret' measures, given high degree of uncertainty.
 - Use of realtime control to prevent flooding in most sensitive areas
 - (Early) warning systems for inevitable flooding

Challenges (2)

- Urban flood modelling
 - How do we get our models right ??
 - Need for uncertainty estimation.
 - Very difficult to know the current situation at private properties
 - Do we really know how SUDS behave ?
 - How to verify a 2D flood model ?
 - Community assistance required (social media)
 - Will we be able to run complex models sufficiently fast for early warning ?

