

Overview of the Automatic Overland Flow Delineation Tool (AOFD)

By Susana Ochoa-Rodriguez, Imperial College London (<u>s.ochoa-rodriguez@imperial.ac.uk</u>)

Material prepared for RainGain's WP3 Technical Meeting held in KU Leuven, Belgium on 22nd August 2013

Dual-drainage concept: Sewer Network + Overland Network

(Djordjević et al., 2005)

- Sewer system (manholes and pipes): 1D
- **Overland system** (depressions and flow paths): 1D or 2D:
 - 2D overland flow modelling: Surface divided into small elements (squares or irregular triangles). In general, long computational time, not suitable for real time forecasting.
 - ID overland flow modelling: Overland system consists of nodes (ponds) and links (flow paths). It can be created manually or <u>using the AOFD tool, based upon an accurate DEM (Digital Elevation Model) of the area</u>.
 Fast, suitable for real time applications.

Djordjević, S. et al. (2005). SIPSON - Simulation of interaction between pipe flow and surface overland flow in networks. Water Science and Technology, 52 (5), 275-283.

2D model of the surface

1D model of the surface

Automatic Overland Flow Delineation (AOFD) Tool

- GIS tool which automatically analyses and generates 1D model of the overland network based on DEM
- Takes into account processes such as pond forming, flow through preferential pathways and surface drainage capacity
- Takes into account interactions with sewer system

Inputs of AOFD

DEM

Output of AOFD

- Set of shapefiles which contain the information about the elements that constitute the 1D model of the overland network:
 - Ponds (local depressions) = nodes with associated storage capacity
 - Flow pathways = links with computed geometry

 These files can be imported into several hydraulic simulation software and can be easily coupled with 1D models of the sewer system, thus allowing for the creation of 1D-1D dual drainage models

AOFD is not a hydraulic simulation engine!

AOFD Algorithm

1. Pond delineation:

- Identification of sinks
- Quantification of surface storage (depth-volume relationship)
- Determination of natural exit point of pond
- Based on DEM, using iterative "growup" method

Pond filtering?

- It is advisable to remove small ponds
- User may define filtering threshold.

2. Pathway delineation

- Connection between nodes (ponds & manholes) is identified
- Based on DEM, using "rolling ball" algorithm

Elimination of duplicates / merging of pathways:

If two or more pathways are closer than a given value (normally grid size), they are merged

3. Estimation of pathways' cross-section

- Geometry of the open channel (user can choose between trapezoidal and arbitray cross-section)
- Upstream/downstream elevations
- Actual length of the pathway
- Average slope

Methodology:

- Equi-distant cross sections are drawn along each pathway
- Arbitrary shape: elevation at each offset distance from centre
- Trapezoidal shape: find geometry of trapezoid that fits H(m)-A(m²) curve

- 4. Creation of surface flow network and generation of hydraulic model input files
- Parameters regarding interaction between sewer system and overland network are established by user
- Pathway roughness is assigned by user
- AOFD generates shapefiles of ponds and pathways

1D Overland Network of Cranbrook Catchment

Exercise

Executing the AOFD tool and creating a 1D1D dual-drainage model

You have been provided with the following input dataset:

Sain STEP 2: Launching the AOFD tool

 You have been provided with a folder that contains the AOFD software:

🖳 Surface Flow Netwo	rk tool				- 0 X
ASCii raster converter	Pond delineation	Path delineation	Cross section	Surface flow n	etwork
- Raster conversion -					
ESRI ASCII to	IDRISI (16bit) file			d	lata type
 IDRISI (16bit) 	file to ESRI ASCII			Į	integer 👻
input file					browse
output file					browse
🔲 assign elevati	on to noData values	3		[convert
Vector conversion -	to IDRISI *.vec file ile to ESRI *.shp file	:			
input file					browse
output file					browse
					convert
Exit					

STEP 3: Executing the AOFD tool

🖳 Surface Flow I	Network tool			
ASCii raster con	nverter Pond delineation Path delineation Cross section Surface flo	v network		
project file	D:\AOFD_Runs_VS\03_Victoria_5m\VS5.pro	Browse	1.	Pond delineation
Delineation	n type			
🔘 entire 🛙	DEM			
💿 catchr	ment boundary			Start
 catchr 	ment boundary + sewer			Input file reading
Dendered				
Pond remo	oval			
	e ponds			Pond delineation
volume (m3	3) 0 (0 · 5 m3)			
depth (m)	0 (0 · 0.2 m)		Pond filtering	yes Pond
			(volume and depth)	filtering?
V remove	e ponds inside building polygons			V No
buildings fil	ile D:\AOFD_Runs_VS\03_Victoria_5m\InputData\build5.IMG	Browse		Flow paths
				delineation
F uit				
	UK			section definition
				¥
				Generation of hydraulic
				model input files
Results of nond fi	ultering 🛁 🦕			J.

Results of pond filtering	x
No. Pond Removed/Total = 268/ 2957 Total Volume = 727790.253242000200000 Loss Volume = 228026.775827000000000 Loss = 31.331%	
ок	

Surface Flow Network tool ASCii raster converter Pond delineation Path delineation Cross section Surface flow network	2. Flow path delineation
project file D:\A0FD_Runs_VS\03_Victoria_5m\VS5.pro Delineation type pond links Path delineation parameters buffer radius (m) 40 number of iterations 50 consider buildings in delineation buildings file D:\A0FD_Runs_VS\03_Victoria_5m\InputData\build5.IMG Browse Surface junction parameters grid size for analysis (m) 5	Re Start Input file reading Pond delineation Pond filtering Volume and depth) Flow paths delineation Flow paths cross- section definition Generation of hydraulic model input files Elimination of duplicate flow paths

ſ

🖳 Surface Flow Network tool	
ASCii raster converter Pond delineation Path delinea	tion Cross section Surface flow network
project file D:\AOFD_Runs_VS\03_Victoria_5m\\	/S5.pro Browse
manhole correspondence file D:\AOFD_Runs_VS	S\03_Victoria_5m\InputData\mar Browse
Pathway hydraulic characteristics roughness coefficient 20	Additional SIPSON parameters (pond to pond interactions)
Sewer interactions (manholes to ponds)	weir crest length (m)
weir crest length (m) 1	use irregular cross section
Optional parameters Image: Consider optional parameters Image: Consider optional parameters ponds' extra elevation (m) 0.1 slope of pond's	
Exit	SIPSON InfoWorks

4. Creation of surface flow network and generation of hydraulic model input files

AOFD output files (in DSD folder)

STEP 4: Importing AOFD output files into InfoWorks CS

- i. Open and checkout the model of the sewer network
- ii. Open the Data Import Centre (under the Network menu)
- iii. Import the output files of the AOFD tool taking into account the tables and corresponding object fields
- iv. Checks and manual editing is needed (e.g. to remove lose paths and make sure the connection with the sewer system is correct).

و اللو 📜 📖

en Data Import Centre				<u> </u>
Table To Import Data Into	Flag f In Ir Othe Flag	Behaviour nport flags from d rwise, set flag on when Default Valu	ata source imported fields to: e is used:	•
Data Source Source Type: ArcView Shape File File: D:\AOFD_Runs_VS\03_V	Victoria_5m\DSD\Sur	ature:		Ţ
Script File (optional)	R	eload	User	•
- Inf Managine Carefin, we kind a			and Archa	MA
eld Mapping Configuration: Lo	ad Config Save Config	j Clear C	Default Values	-Map
eld Mapping Configuration: Lo Object Fields Node ID	ad Config Save Config Import Fields) Clear C	onfig Auto	-Map
eld Mapping Configuration: Lo Object Fields Jode ID Jode Type	ad Config Save Config Import Fields NODE_ID NODE_TYPE	Clear C	onfig Auto	
object Fields Object Fields lode ID lode Type System Type	ad Config Save Config Import Fields NODE_ID NODE_TYPE SYS_TYPE	Clear C	onfig Auto	
eld Mapping Configuration: Lo Object Fields lode ID lode Type System Type Asset ID	ad Config Save Config Import Fields NODE_ID NODE_TYPE SYS_TYPE	Clear C	onfig Auto	
eld Mapping Configuration: Lo Object Fields Node ID Node Type System Type Asset ID Ground Level	ad Config Save Config Import Fields NODE_ID NODE_TYPE SYS_TYPE GROUND_LEV	Clear C	onfig Auto	
eld Mapping Configuration: Lo Object Fields Node ID Node Type System Type Asset ID Sround Level	ad Config Save Config Import Fields NODE_ID NODE_TYPE SYS_TYPE GROUND_LEV FLOOD_LEV	Clear C	onfig Auto	
eld Mapping Configuration: Lo Object Fields Node ID Node Type System Type Asset ID Pround Level Nood Level Chamber Floor Level	ad Config Save Config Import Fields NODE_ID NODE_TYPE SYS_TYPE GROUND_LEV FLOOD_LEV	Clear C	onfig Auto	
eld Mapping Configuration: Lo Object Fields Node ID Node Type System Type Asset ID Fround Level Flood Level Chamber Floor Level Chamber Roof Level	ad Config Save Config Import Fields NODE_ID NODE_TYPE SYS_TYPE GROUND_LEV FLOOD_LEV	Clear C	onfig Auto	
eld Mapping Configuration: Lo Object Fields Node ID Node Type System Type Asset ID Sround Level Chamber Floor Level Chamber Floor Level Chamber Plan Area	ad Config Save Config Import Fields NODE_ID NODE_TYPE SYS_TYPE GROUND_LEV FLOOD_LEV	Clear C	onfig Auto	-Map
eld Mapping Configuration: Lo Object Fields Node ID Node Type System Type Asset ID Fround Level Flood Level Chamber Floor Level Chamber Floor Level Chamber Roof Level Chamber Plan Area	ad Config Save Config Import Fields NODE_ID NODE_TYPE SYS_TYPE GROUND_LEV FLOOD_LEV	Clear C Clear C Clear C Clear C Clear C Clear C Clear C Clear C Clear C	onfig Auto	-Map
eld Mapping Configuration: Lo Object Fields Node ID Node Type System Type Asset ID Ground Level Chamber Floor Level Chamber Floor Level Chamber Roof Level Chamber Plan Area Shaft Plan Area	ad Config Save Config Import Fields NODE_ID NODE_TYPE SYS_TYPE GROUND_LEV FLOOD_LEV	Clear C	onfig Auto Default Values	-Map
eld Mapping Configuration: Lo Object Fields Node ID Node Type System Type Asset ID Ground Level Chamber Floor Level Chamber Floor Level Chamber Plan Area Shaft Plan Area Updating and Delete Options	ad Config Save Config Import Fields NODE_ID NODE_TYPE SYS_TYPE GROUND_LEV FLOOD_LEV FLOOD_LEV	Clear C	onfig Auto Default Values	-Map
eld Mapping Configuration: Lo Object Fields Node ID Node Type System Type Asset ID Ground Level Chamber Floor Level Chamber Floor Level Chamber Roof Level Chamber Plan Area Shaft Plan Area Updating and Delete Options Prompt Merge Up Overwrite Ignore O	ad Config Save Config Import Fields NODE_ID NODE_TYPE SYS_TYPE GROUND_LEV FLOOD_LEV FLOOD_LEV	Clear C	Default Values	-Map

Investing in Opportunities

- Data preparation and model setup is time-consuming
- 1D model of the surface may be inaccurate in areas with multidirectional flow paths (i.e. flat areas and areas where expected flow depths are high)
- Visualisation this can be improved by post-processing data
- As any other models, 1D1D models need calibration (especially of manholes and gullies, the parameters of which determine the volume of water that is exchanged between the surface and sewer system)