

Exchange Activities

- 1. Standard formats for data exchange
- 2. Algorithms to be shared
- 3. Fact sheet for documenting algorithms
- 4. Candidate datasets for model testing
- 5. A bit of Delft-FEWS

By Susana Ochoa-Rodriguez

RainGain Project Meeting, Paris, 22nd October 2013

1. Candidate standard formats

- FOR SERIAL DATA (point location time series):
 - Only CSV
- FOR SPATIAL DATA (namely, radar grid data):
 - Mainly CSV
 - Also: ESRI ASCII and Nimrod
 - Possibly: HDF5 (used in NL and UKMO)

CSV: main exchange format

- Simple text file, one column per time-series from sensor or radar grid
- Main advantage: easy to use and code, one single file per storm event
- Main disadvantage: file size, slow to read and write

Nimrod: alternative format for grid data

- Data stored in binary format
- Main advantage: file size (good for storage!), reading and writing speed
- Main disadvantage: more complex and difficult to handle/code, several files per storm event (one file per time step)
- Tools will be provided to convert from CSV to Nimrod and vice-versa
- Tools will be provided to convert from ASCII to Nimrod and vice-versa

- Tools will be provided to clip smaller areas from complete radar images in Nimrod format
- Format already in use in UK and Belgium

ESRI ASCII: alternative format for grid data

- Text format
- Main advantage: commonly used, easy to read/write, ready for display using GIS software
- Main disadvantage: file size, slow to read and write, several files per storm event (one file per time step)
- Tools will be provided to convert from CSV to ASCII and vice-versa
- Tools will be provided to convert from ASCII to Nimrod and vice-versa
- Tools will be provided to clip smaller areas from complete radar images in ASCII format

HDF5 (Hierarchical Data Format):

alternative format for grid data

- Text format
- Main advantage: standard format used in EU meteorological services, toolboxes/libraries available for data conversion
- Main disadvantage: more complex
- Tim will provide more info about it

2. Algorithms to be shared

General approach:

- Sharing through Delft-FEWS platform (but users may chose to run the algorithm directly without going through the platform, depending on what is more convenient)
- What is required from developers?
 - An executable file which can be run headless and which takes data and produces outputs in one of the standard formats we will define chosen
 - Algorithm documentation
- I (Susana) will wrap-up algorithms and will create the adaptor for using them in Delft-FEWS
- Tutorial material is available for incorporating external algorithms into your customised platforms

Conceptual workflow for executing external rainfall processing modules through Delft-FEWS

Conceptual workflow for executing external rainfall processing modules through Delft-FEWS

Conceptual workflow for executing external rainfall processing modules through Delft-FEWS

2. Algorithms to be shared

From ICL:

- Merging: KED, Bayesian, Mean Field Bias (at least)
- Downscaling: Lipen's (now at KUL)
- **X-band radar processing routines:** this will depend on whether or not they work well, on how case-specific they are, on how useful they could be for other partners (i.e. is it worth sharing it and spending time in wraping up the algorithms?)

2. Algorithms to be shared

From other partners? Some initial suggestions:

- ENPC:
 - Downscaling: Auguste's
 - X-band radar data processing: same issues as ICL's algorithms
- KUL:
 - Merging: Brandes, Simple-Kriging-based
 - Nowcasting: depending on progress throughout project
- TU Delft:
 - X-band radar data processing: same issues as ICL's algorithms

3. Algorithms documentation

- Fact sheet in Excel
- Includes:
 - Brief description
 - Inputs / outputs
 - Pseudocode
 - Citation
- Open file...

4. Datasets to be used for model testing:

- One common rainfall dataset will be applied to models of all pilot locations. This
 dataset will include: C-band and/or X-band radar data, raingauge data, merged
 radar-raingauge data, downscaled radar data. This would enable drawing
 conclusions regarding the effect of different rainfall inputs on different models.
- Complete dataset specific to each pilot location, comprising rainfall as well as water depth/flow measurements. This would enable assessing the performance of the model.

Comments:

- We need an initial dataset for initial testing and upcoming joint publication
- We can later on have better datasets once new X-bands are installed

5. A bit of Delft-FEWS

- Initial implementation at all pilot locations is done!
- Next steps:
 - Implementation of data format conversion tools (first will be available in January 2013)
 - Implementation of data clipping tools (January 2013)
 - Implementation of exchange algorithms as they become available
 - Visualisation will be improved in the process
- Tutorial material circulated in August 2013 has helped clarify the overall structure of the platform and will hopefully facilitate the implementation of what is left to be done

