

EGU2012-14324 (EG4) **Scientific Challenges for Enhancing Urban Pluvial Flood Resilience** Susana Ochoa Rodriguez¹, Marie-claire ten Veldhuis², Čedo Maksimović¹, Daniel Schertzer³, Patrick Willems⁴ ¹Imperial College London, UK ²Delft University of Technology, NL ³Ecole des Ponts-ParisTech, FR ⁴KU Leuven, BL

Climate Change

Increases frequency of extreme rainfall events

Increased Urbanisation

Decreases infiltration, increases runoff & exposure

Increasing Population Density

Leads to increased exposure in urban areas

Requirements

Accuracy o

Multiple sources of **Uncertainty**

Uncertainty α

Various data formats, and simulation tools Lack of coordination between floo

Apathy, low flood risk awareness

UNCERTAINTY

propagation analysis

Framework & platforms to efficiently inte-

grate rainfall inputs with hydro models and uncer-

Information sharing at all levels