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Introduction of Fluidity CFD software

» Developed by Applied Modeling and Computation
Group (AMCG) at Imperial College London;

» Open source, general purpose, multi-phase CFD code,
can be obtained from http:/fluidityproject.github.io/;

» Numerically solving the Navier-Stokes and
accompanying field equations;

» Arbitrary unstructured finite element meshes in one, two
and three dimensions;

» Adaptive mesh in parallel;

» A wide range of finite element/control volume element
choices including mixed formulations.
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Research motivations -- why 3D modeling?

» More detailed information (vertical
velocity, forces, etc.);

» Applicable when shallow water
assumptions become invalid;

» Better representation of the physical
process of flooding.
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Contents of this presentation

» Governing equations and boundary
conditions;

» Validation of the model results:

» Application In real urban flooding events;
» Future work.
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Governing Equations

The 3D non-hydrostatic Navier-Stokes equations with the
Boussinesq Approximation:
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Wetting and Drying

free surface (dry area) free surface (wet area)
a=1 o=0
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Boundary conditions

» The combined kinematic free-surface boundary condition:

3 !—*H.*._: N
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» Bottom stress parameterization (Manning-Strickler formulation):

o, ala
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In dry areas, a large value of n_, is needed :
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Contents of this presentation

» Governing equations and boundary
conditions;

» Validation of the model results:

» Application In real urban flooding events;
» Future work.
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Validation of the 3D flooding model

» Circular dam break case — compared
with 2D modeling results

» L-shape channel flow — compared with
experimental data
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Circular dam-break case

40 m
movie of H=2.5m movie of H=0.025 m
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Circular case: comparison with 2D models
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L- shape dam break case
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[1] Q. Liang, A. Borthwick, and G. Stelling. Simulation of dam-and dyke-break hydrodynamics on dynamically adaptive quadtree grids.
International journal for numerical methods in fluids, 46(2):127-162, 2004.
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Validation

Comparison of 3D
modelling results
with experimental
data
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Contents of this presentation

» Governing equations and boundary
conditions;

» Validation of the model results:

» Application in real urban flooding events;
» Future work.
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Application in real urban flooding events

» A flooding case In a 5.5kmx2.5km
realistic domain

» A flooding event within Glasgow city
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Flooding in a 5.5kmx2.5km domain
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Water depth

t=1.5hrs t=25hrs

t=35hrs
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Velocity

t = 1-5 hﬂi N . t= 2.5 h‘rﬂ Welooity

t=35hrs
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Topography and discharge of inflow — Glasgow case
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Multi-scale mesh (plain view)

Movie of velocity Movie of depth
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Water depth
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Water depth
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Comparison with four 2D models!?!
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Velocity

. Velocity Magnifude
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Velocity
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Vertical motion

| Vertical Velocity (m/s)
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Vertical Velocity (m/s)
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Statistic maximum vertical velocity component in the
whole domain
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Contents of this presentation

» Governing equations and boundary
conditions;

» Validation of the model results:

» Application In real urban flooding events;
» Future work.
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Future work

» Coupled modeling of surface flow in 3D
(Fluidity) and drainage pipe flow in 1D (SWMM);

» Implementation of Adaptive Mesh technigue to
the proposed 3D flooding model.



Thank you
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