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1. INTRODUCTION 



Why we need to adjust radar rainfall data? 
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Sensors commonly used for estimation of rainfall at 
catchment scales 

RAINGAUGE RADAR 

Accuracy 

Coverage, spatial 
characterisation of rainfall field 

Raingauge  Weather 
Radar 



2. LOCAL SINGULARITY ANALYSIS 



Local singularity analysis decomposes a geo-value 
into a singular and a non-singular components 

1 1

Mass density

Non-singularity component:
The Background magnitude that 
does not change as scale varies

The “singularity” component, of which 
the value varies at different scales 
according to local singularity exponent, 
termed α(x)
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α = 2, no singularity exists 

α > 2, local depletion 

α < 2, local enrichment 

α ≠ 2, singularity exists 



As compared to the original radar (RD) field, the Non-
Singular (NS) one is smoother and more symmetric 

20110526 1525: Original RD 20110526 1525: Non-Singular RD 
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The degree of “smoothing” is in particular strong at the 
locations where more local extreme magnitudes are seen 



The multifractal spectrum of a Non-Singular field is narrower  
and the α values are less diverse (concentrating around 2, i.e. 
non singular) 



3. BAYESIAN DATA MERGING AND ITS 
INTEGRATION WITH LOCAL 
SINGULARITY ANALYSIS 



Principle of radar-raingauge data merging technique 

interpolation comparison 

error (or bias) field  
construction/fitting 

adjustment 

output 

a) b) 

c) d) 

e) f) 

g) 

RG data Radar data 

(Todini, 2001; Ehret et al., 2008) 

Block-Kriging 
Interpolation: 

- RG field yG 

- estimation error 
covariance CεG 

Kalman Filter: 
- Construct the error field ε and 

its covariance Cε 
- Derive the “Kalman Gain” based 

upon CεG and Cε 



d) 

Block-Kriging 
interpolation 

Singularity 
extraction 

BK rain gauge field Non-Singular (NS) radar field 

Local 
singularity 

(α) field 

Error field fitting 

Comparison  
(error field construction) 
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Singularity 
recovery 
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h) 

Kalman Filter 

Integration of local 
singularity analysis 



PRELIMINARY RESULTS 

Reconstruction of a 2009 summer storm 
crossing Central London area 

• This storm led to flooding in North-West London 

• The water company of the area wants to reconstruct this storm in order to improve 
the design of the sewer system (they are interested in appropriately estimating the 
return period of the storm) 

• Original radar QPEs underestimate rainfall depths: when inputting the radar QPEs 
into the hydraulic model of the area, no flooding is observed. 

• The Bayesian merging led to smoothening of the convective cells initially observed in 
the radar images (although the radar estimates were inaccurate, the shape of the 
convective cells was properly captured by it) 

• Local Singularity Analysis was applied with the aim of better preserving the intense 
precipitation areas during the Bayesian merging 



Deployment of rain gauges, backgrounded by radar rainfall 
accumulations over the event period  

56

48

40

32

24

16

8

4

0

Rainfall Depth 
(mm)

B A 

168 000

172 000

176 000

180 000

184 000

188 000

192 000

196 000

516 000 520 000 524 000 528 000 532 000 536 000 540 000 544 000

N
o

rt
h

in
g 

(m
)

Easting (m)

MIDAS (1-hour) LGfL Nearby (30 min) LGfL SURR (30 min)

Point A Point B (Maida Value tube stn) EA RGs (15 min)



Images at each step of the Bayesian data merging with/without 
local singularity analysis 

Non-singular 
Radar  

Non-singular 
Merged 

Nimrod (Original) Block-Kriged RGs Bayesian Merged 

Reconstructed 
(Singularity-sensitive Merged) 



Nimrod (Original) Block-Kriged RGs Merged 

Quantile-quantile plots at each step of the Bayesian data 
merging with/without local singularity analysis 
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Merged radar rainfall estimates with local singularity analysis are 
visually more realistic and show better temporal continuity 

16:55 GMT 17:00 GMT 17:05 GMT 

Bayesian Merging 

Reconstructed: Local Singularity + Bayesian Merging 



Comparison of the merged radar rainfall accumulations and 
rates against independent EA raingauge records 



Conclusions & on-going research 

• Local singularity analysis enables the decomposition of a geo-datum into 2 
components: a local singularity exponent and a non-singular value, where 
the latter is of better normality than the original geo-datum. This 
facilitates the merging process since the existing merging techniques are 
developed mostly based upon the 1st and/or 2nd (statistical) moment 
approximation. 

• It can be observed that local singularity analysis enables a visually more 
realistic and less smooth merged rainfall field; this is because the 
proposed methodology can recover the valuable singularity information 
that were smoothed off in the conventional merging process. 

• In our case study, both the original and the “singularity-sensitive” Bayesian 
data merging techniques were found to effectively reduce the cumulative 
radar rainfall bias (as compared to the raingauge records), but the latter 
can better capture the local peaks in instantaneous rainfall rate profiles. 

• The proposed methodology is now being used to re-construct a number of 
storm events observed in Edinburgh (UK) during the Summer of 2011 and 
for which high density raingauge rainfall and sewer flow data are available. 
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Appendix 
 

The impact of local singularity analysis on radar-
raingauge error (or bias) field construction 



Obtaining merged estimates using Kalman filter 

yMerged = yRD + K (yG – yRD) 

K = Cε (Cε + CεG)-1 

Kalman Gain is the function of the covariances of estimation errors 
(uncertainty) of BK interpolation (yG) and RD-BK bias (yG – yRD).  
 
If Cε >> CεG, the BK-RG estimates (yG) are trusted more than RD 
estimates (yRD); 
If Cε << CεG, the RD estimates (yRD) are trusted more than BK-RG 
estimates (yG). 

The magnitude of Cε and its estimation will largely 
affect the quality of data merging! 



Radar data at 4 different time steps are used to assess the 
impact of singularity extraction on covariance of radar-
raingauge errors (bias) 



Magnitude of the covariance of BK-RD errors can be 
largely decreased in “extreme” cases. 



Coefficient of Variation (CV) of variogram/covariance 
estimation  

Range

Sill

h

γ (h)

Mean (μ) of the semi-variances 
at this distance 

Standard deviation (σ) of the 
semi-variances at this distance 

Coefficient of Variation (CV) = σ / μ 

C(h) = C(0) – γ(h) 



The estimation uncertainty of variogram estimation of 
radar-raingauge errors can be reduced in “extreme” cases. 


