

Cours Mesures Environnementales :

Disdromètres et mesure de pluie

Auguste Gires (auguste.gires@leesu.enpc.fr)

UNIVERSITÉ -

- PARIS-EST

(EU Climate KIC)

Ecole des Ponts ParisTech, 18 mars / 6 mai 2015

Direction de la Production

heure

How to measure rainfall ?

(+ a need to dvp a theoretical representation at the same time !)

Rain gauge

Weather radars

(From operational to research tools)

Fig. 1. Geometry of the different optical elements

Outline

How do they work ? PWS100 (Campbell Scientific) Parsivel² (OTT)

What do they measure and how to relate it to relevant physical quantities?

Data analysis

Examples of applications

Example of optical limitations Small scale rainfall variability Retrieving radar properties

PWS 100 (Campbell Scientific)

Hardware configuration Estimation of *v* and *d* for a liquid hydrometeor Estimation of *v* and *d* for a solid hydrometeor Distribution of size and velocity Particle classification

References:

- PWS100 User's manual
- PWS100 Leaflet (http://www.campbellsci.co.uk)
- Ellis R A et al, 2006, New Laser Technology to Determine Present Weather Parameters, Meas. Sci. Technol., 17 1715-1722

Figure 2. Transmitter and detector arrangement in (a) side view and (b) plan view.

Time delay between the two detectors

Estimation of v and d for a liquid hydrometeor Periodic signal

Laser beam made of 4 sheets :

Estimation of $\Delta t_A = \Delta t_B$ and Δt_{AB}

What about non-spherical drops ?

The authors (Ellis et al., 2006) of the paper basically assume that it is a good approximation to interpret the measured diameter as the equivalent diameter of a spherical particle. I will simply quote their justification:

"It is noted that as the drop becomes more oblate (they discuss a classical formula for shapes by Beard and Chuang, 1987) the optical power of the surfaces becomes greater but their separation also increases and this reduces the total power of the lens. For small deviations from spherical these two effects almost compensate for each other."

Distribution of size and velocity

34 classes of size

34 classes of velocity

	Particle diameter class	
Class	Diameter [mm]	Class width [mm]
1	=>0.00	0.1
2	=>0.10	0.1
3	=>0.20	0.1
4	=>0.30	0.1
5	=>0.40	0.1
6	=>0.50	0.1
7	=>0.60	0.1
8	=>0.70	0.1
9	=>0.80	0.1
10	=>0.90	0.1
11	=>1.00	0.2
12	=>1.20	0.2
13	=>1.40	0.2
14	=>1.60	0.2
15	=>1.80	0.2
16	=>2.00	0.4
17	=>2.40	0.4
18	=>2.80	0.4
19	=>3.20	0.4
20	=>3.60	0.4
21	=>4.00	0.8
22	=>4.80	0.8
23	=>5.60	0.8
24	=>6.40	0.8
25	=>7.20	0.8
26	=>8.00	1.6
27	=>9.60	1.6
28	=>11.20	1.6
29	=>12.80	1.6
30	=>14.40	1.6
31	=>16.00	3.2
32	=>19.20	3.2
33	=>22.40	3.2
34	=>25.60	74.4

Particle speed class		
Class	Speed [m/s]	Class width [m/s]
1	=>0.00	0.1
2	=>0.10	0.1
3	=>0.20	0.1
4	=>0.30	0.1
5	=>0.40	0.1
6	=>0.50	0.1
7	=>0.60	0.1
8	=>0.70	0.1
9	=>0.80	0.1
10	=>0.90	0.1
11	=>1.00	0.2
12	=>1.20	0.2
13	=>1.40	0.2
14	=>1.60	0.2
15	=>1.80	0.2
16	=>2.00	0.4
17	=>2.40	0.4
18	=>2.80	0.4
19	=>3.20	0.4
20	=>3.60	0.4
21	=>4.00	0.8
22	=>4.80	0.8
23	=>5.60	0.8
24	=>6.40	0.8
25	=>7.20	0.8
26	=>8.00	1.6
27	=>9.60	1.6
28	=>11.20	1.6
29	=>12.80	1.6
30	=>14,40	1.6
31	=>16.00	3.2
32	=>19.20	3.2
33	=>22.40	3.2
34	=>25.60	74.4

At each time step : a 34 x 34 matrix with the number or particles for each class

Particle classification

The parameters used in the analysis are:

- Size
- Velocity
- Ratio of signal peak height to signal pedestal height
- Temperature
- Relative humidity
- Wet bulb temperature

Nine possible types:

- Drizzle
- Freezing
- Drizzle,
- Rain,
- Freezing rain,
- Snow grains,
- Snowflakes,
- Ice pellets,
- Hail
- Graupel

 $S_t = \prod_p S_{p,t}$

Fuzzy logic algorithm:

Score for given particle type (t)

Score for each parameter (p) for a particle type (t) (from reference tables) When a particle is detected:

- The parameters are estimated
- S_t is computed for each type
- The particle is affected the type for which it has the greatest score

Parsivel² (OTT)

Hardware configuration Estimation of *v* and *d* for a liquid hydrometeor Distribution of size and velocity Particle classification (same principle as PWS100)

References:

- Parsivel2 User's manual

Loffler-Mang, M. and J. Joss, An Optical Disdrometer for Measuring Size and Velocity of Hydrometeors. Journal of Atmospheric and Oceanic Technology, 2000. 17(2): p. 130-139.
Battaglia, A., et al., PARSIVEL Snow Observations: A Critical Assessment. Journal of Atmospheric and Oceanic Technology, 2010. 27(2): p. 333-344.PWS100

Hardware configuration

Received signal

Hydrometeor falls through the sampling area :

→ Laser beam partially occluded

0.5

Warning : actually discrete measures !

Battaglia et al., 2010

Assumptions on the oblateness of falling rain drops

Assumptions on the oblateness of falling rain drops

Small drops (D < 1 mm) are spherical, but biggers one are more elliptical (due to air friction)

Axis ratio = vertical / horizontal

Light blue curve shows the approximated oblate spheroid shapes whose axis ratios are from Thurai and Bringi (2005).

Thurai et al. 2007

How to compute the size ?

FIG.2. Schematic diagram showing the influence of the size and of the velocity of two particles passing through the PARSIVEL beam on the output voltage. The diamonds represent the discrete PARSIVEL 10×Hz samples; continuous lines indicate the effective continuous signal produced by the particle dimming, normalized to its peak value F_{max} (left) λ 0.5-mm-diameter sphere (the small deformation is due to graphical problems) falling at 2 m s⁻¹. The dashed line is shown to exemplify the technique adopted to compute Δt_{50} (by linear interpolation). (right) λ 2-mm-diameter sphere (falling at 6 m s⁻¹). The black continuous line is shown to exemplify the technique adopted to estimate the maximum sizeal (by parabolic interpolation).

 F_{max} = maximum shadowed area

$$F_{\max} = \begin{cases} \pi AB & B \le \frac{h}{2} \\ 2AB \left[\arcsin\left(\frac{h}{2B}\right) + \frac{h}{2B} \sqrt{1 - \left(\frac{h}{2B}\right)^2} \right] & B > \frac{h}{2} \end{cases}$$

(A and B determined by D_{eq}^{PAR})

Estimation of *v* and *d* for a liquid hydrometeor How to compute the velocity ?

FIG.2. Schematic diagram showing the influence of the size and of the velocity of two particles passing through the PARSIVEL beam on the output voltage. The diamonds represent the discrete PARSIVEL 10-kHz samples; continuous lines indicate the effective continuous signal produced by the particle dimming, normalized to its peak value $F_{max}(lot) A 0.5$ -mm-diameter sphere (the small deformation is due to graphical problems) falling at 2 m s⁻¹. The dashed line is shown to exemplify the technique adopted to compute Δt_{50} (by linear interpolation). (right) A 2-mm-diameter sphere falling at 6 m s⁻¹. The black continuous line is shown to exemplify the technique adopted to estimate the maximum signal (by parabolic interpolation).

Assumption on drop shapes :

$$H = H_{est}^{PAR} = 2B = D_{est}^{PAR} \left(a_r^{PAR}\right)^{2/3}$$

Estimation of
$$\Delta t$$
: $\Delta t = f(\Delta t_{50})$

Duration during which the intensity of the occlusion is greater than half of the maximum one

Drop size distribution and physical quantities

N(D) in mm⁻¹.m⁻³ N(D)dD is number of drops with D<Diam.<D+dD per unit volume

Interpretation of DSD (Jameson, A.R. and A.B. Kostinski, 1998):

- Computed for few min \rightarrow reflects physical processes at stake (coalescence, collision, break-up)

- Computed over events or more \rightarrow a formal relationship

Two standard forms :

- Exponential:

$$N(D) = N_0 e^{-\Lambda D}$$

- Gamma distribution :

 $N(D) = N_0 D^{\mu} e^{-\Lambda D}$

(Marshall-Palmer 1948)

(a dependency between μ (shape parameter) and Λ (slope)))

N(D) and rain rate

N(D) and rain rate

Hence we have:

$$R = \frac{4}{3}\pi \int_{D_{\min}}^{D_{\max}} N(D)v(D) \left(\frac{D}{2}\right)^3 dD$$

With N(D) in mm⁻¹m⁻³, v(D) is m.s⁻¹, D in m dD in mm and R in m.s⁻¹

With more standard unit :

$$R = 6\pi 10^{-4} \int_{D_{\min}}^{D_{\max}} N(D) v(D) D^3 dD$$

With N(D) in mm⁻¹m⁻³, v(D) is m.s⁻¹, D in mm dD in mm and R in mm.h⁻¹

N(D) and rain rate Terminal fall velocity of raindrops

Comparison of terminal fall velocity laws

N(D) and other physical quantities

ρ_{l} (g.m⁻³) (Liquid water content)

$$\rho_l = \rho_w \frac{1}{10^9} \frac{4}{3} \pi \int_{D_{\min}}^{D_{\max}} N(D) \left(\frac{D}{2}\right)^3 dD$$

With $\underline{\rho}_{l}$ in kg.m⁻³, N(D) in mm⁻¹m⁻³, v(D) is m.s⁻¹, D in m dD in mm

Radar parameters:

- Horizontal and vertical reflectivity:

The real part of the forward scattering amplitude at horizontal/vertical polarization (Mishchenko et al., 1996)

Data retrieved from measurements

Over each time step Δt

For each time step Δt the number $n_{i,j}$ of drops per class of diameter D_i (with extend ΔD_i) and velocity v_i (with extend ΔD_i).

The sensing area of the disdrometers is S. Some authors suggest to take into account an effective sampling area which varies with size:

$$S_{eff}(D_i) = L\left(W - \frac{D_i}{2}\right)$$

Where *L* and *W* are respectively the length and width of the sensing area.

Snapshot of output message from Parsivel²

40:20000

41:20000

50:00000213

51:000209

90:-9.999;-9.999;02.213;02.051;00.425;-9.999;-9.99;-9.99;-9.99;-9.99;-9.99;-9.99;-9.99;-9.99;-9.99;-9.99;-9.99;-9.99;-9.99;-9.99;-9.99;-9.99;-9.99;-9.9

Data retrieved from measurements

How to compute *N*(*D*)?

 $N(D_i) \Delta D_i$ = nb of drops of in the class *i* per unit volume The contribution to this by an individual drop is :

 $\frac{1}{Volume} = \frac{1}{Sv_j \Delta t}$

 $N(D_i) \Delta D_i$ is the sum of the contribution of all the drop in class *i* observed during Δt .

$$N(D_i) = \frac{1}{S_{eff}(D_i)\Delta D_i \Delta t} \sum_j \frac{n_{i,j}}{v_j}$$

Remark: if v_i not available as for JW disdrometers, it is possible to use a standard model

Data retrieved from measurements

How to compute R?

Method 1: with the computed DSD

$$R = 6\pi 10^{-4} \sum_{i} N(D_{i}) v(D_{i}) D_{i}^{3} dD_{i}$$

velocity affected to all the particle of size D_i .

Method 2: directly from the spectrum

$$R = \frac{\pi}{6\Delta t} \sum_{i,j} \frac{n_{i,j} D_i^3}{S_{eff}(D_i)}$$

With N(D) in mm⁻¹m⁻³, v(D) is m.s⁻¹, D in mm dD in mm and R in mm.h⁻¹

Measures from the roof of the ENPC building

OTT Parsivel² (occulted light) (Available since October 2013) Campbell Scientific PWS100 (scattered light) (Available since March 2013)

+ rain gauge

Installed with the help of S. Botton team (ENSG)

+ radar data (C-band, Trappes, Météo-France)

Data analysis

Scilab script : disdro_data_analysis_student.sci

- 1) Implement both methods of computing a rain rate for the PWS100 and the Parsivel²
- 2) Compare the obtained results (various methods and the two devices)

Measures from the roof of the ENPC building

Illustration for a typical event

- PWS
- Parsivel #1
- Parsivel #2
- Rain gauge
- ---- Radar

Total cumulative depth : PWS vs. Pars 1 and Pars 2 vs. rain gauge: PWS = 145 mm Pars1 = 93 mm Pars2 = 94 mm Rain gauge = 99 mm

Measures from the roof of the ENPC building

Effects of large (>2mm) drops

PWS100 seems to overestimate them

0 2 4 6 8 10

Time (h)

When great influence on rain rate \rightarrow great differences 2013-10-04 01:10:30 2013-10-04 03:12:30 $N(D) (m^{-3}.m^{-1})$ mul. (mm) $R\;(mm.h^{-1})$ $N(D) D^3$ 0.0 0.5 1.0 1.5 2.0 2.5 0.0 0.5 1.0 1.5 2.0 2.5 D (mm) Time (h)Time (h)D (mm) 2013-12-24 15:39:30 2013-12-25 01:39:30 12 wl. (mm) $R \left(mm.h^{-1} \right)$ m $N(D) D^3$ $N(D) (m^{-3})$

When small influence \rightarrow lower differences between devices

Time(h)

0 2 4 6

0 1 2 3 4 5 6

D (mm)

D(mm)

0 2 4 6 8

Drop oblateness poorly taken into account in the PWS100 software

 \rightarrow Suggestion of a correction :

Measures from the roof of the ENPC building

Parsivel² overestimation of small drops

Visible on N(D) and also on size/velocity maps :

Example of measurement issues

Non homogeneity of the laser beam

Fig. 3. Simulation schematics performed to estimate the error on the diameter measurement caused by an assumed Gaussian beam pattern with the tails removed at the 25th percentile and 75th percentile. Only the two extreme cases are shown, when a sphere falls on the edge of the beam, intercepting the beam with the least amount of energy opposed to a sphere falling on the center, where it intercepts the largest amount of energy. For complete results refer to Table 3.

It propagates to rain rate estimation with differences of 10 to 25 % found

Frasson, R.P.d.M., L.K. da Cunha, and W.F. Krajewski, *Assessment of the Thies optical disdrometer performance.* Atmospheric Research, 2011. **101**(1-2): p. 237-255.

Testing the Z-R relationship

For each station :

$$\begin{split} R &= 6\pi 10^{-4} \int_{D_{\min}}^{D_{\max}} N(D) v(D) D^3 \, dD, \\ Z_h &= \frac{10^6 \omega^4}{\pi^5 \left| \frac{m^2 - 1}{m^2 + 2} \right|} \int_{D_{\min}}^{D_{\max}} \sigma_{B_h}(D) N(D) \, dD \end{split}$$

Jaffrain, J. and A. Berne, *Influence of the Subgrid Variability* of the Raindrop Size Distribution on Radar Rainfall *Estimators.* Journal of Applied Meteorology and Climatology, 2012. **51**(4): p. 780-785.

FIG. 2. The Z_A - R_A scatterplot and the fitted Z_A - R_A (solid line) and R_A - Z_A (dashed line) relationships for the transitional rainfall type at C band and at a 60-s temporal resolution.

8 x 2 rain gauges, 0.2 mm

Validation of a Universal Multifractal downscaling process with the help a dense network of disdrometers or rain gauges

Universal Multifractals

Theoretical framework

Validation of a Universal Multifractal downscaling process with the help a dense network of disdrometers or rain gauges.

Results for 6 June 2009 in Lausane

16 disdrometers measurements + uncertainty range (75% and 95% quantile)

Gires, A., et al., *Influence of small scale rainfall variability on standard comparison tools between radar and rain gauge data.* Atmospheric Research, 2014. **138**(0): p. 125-138.

و البير (أ عليه: عليه في واللو الله الله الله الله عليه الله عليه الله الله الله الله الله الله الله

