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i. Overview
The document consists of three main parts, an introduction to radar technology, a part on the radar
measurements and a part based on the rainfall estimation from radar measurements.

Radar technology: After the introduction, Chapter | gives a summary on the different radar

technologies available and the differences in the types of radars that are used for meteorological and
hydrological purposes.

Radar measurements: Chapter Il discusses the different radar procedures to properly calibrate the

different types of radar, while Chapter Ill elaborates on the different adjustment procedures to ensure
correct and representative radar measurements. The influence of the radar scanning strategy on the
radar measurements is discussed in Chapter IV.

Rainfall estimation: Chapter V explains the different possibilities to estimate rainfall based on radar

measurements and the precautions that have to be kept in mind, while Chapter VI discusses the
different adjustment procedures for the ground truthing of the rainfall estimations and the different
techniques for the merging of all different data sources to obtain the best possible fine scale rainfall
estimates and then concludes with the uncertainty or error estimation procedures.

The following topics will be discussed:

* Radar technology and differences in the types of radars used for meteorological purposes:
o Different types of radars (X- vs. C- & S-band)
o Dual versus single-polarisation, Doppler
* Electronic radar calibration (incl. electronic stability)
* Raw radar signal corrections (e.g. clutter removal, attenuation and volume correction etc)
* Radar scanning strategy (e.g. finer vs. coarser resolution etc)
* Rainfall estimation:
o Based on: Reflectivity (2), Differential reflectivity (ZDR), Differential phase (KDP) etc
o Errors due to highly non-linear physics of radar detection of precipitation
o Dependence on atmospheric conditions (rain regimes, wind, humidity, temperature, ...)
* Ground truthing / adjustment:
Correction for different types of radar “errors” before adjustment based on rain gauges
Take rain gauge uncertainty into account
Several adjustment methods exist: mean field bias / Brandes correction etc
Several integration methods exist: kriging (incl/excl external drift) / Kalman filter etc

O O O O

Grid-scale versus point scale: comparison at point scale or grid scale / urban area scale?
* Fine-scale rainfall estimation:
o Integration of all sources: C-band radar, X-band radar, rain gauges, even microwave links
o Integration requires quality of data to be considered (time and space variable)
o Stochastic downscaling methods (scaling laws, fractal theory)
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ii. List of abbreviations
The following abbreviations will be used throughout the document.

* Radar abbreviations:

Radar

Calibration

Adjustment

X-Band

C-band

S-band

Abbreviation of ‘RAdio Detection And Ranging’, an remote sensing system based on
radio waves to determine the range of backscatterers, in this document mostly
referring to ground-based weather radars.

The electronic calibration applied to the radar to give representative reflectivity
estimates of good quality.

The adjustments made to the radar reflectivity measurements based on auxiliary data
sources to give representative rainfall estimates of good quality.

Radar operating on a wavelength around 3 cm
(wavelength of 2.5-4 cm, frequency of 8-12 GHz)

Radar operating on a wavelength around 5 cm
(wavelength of 4-8 cm, frequency of 4-8 GHz)

Radar operating on a wavelength around 10 cm
(wavelength of 8-15 cm, frequency of 2-4 GHz)

* Radar variables:

ZDR

PHIpp

Kop

RHOupy

RainGain WP2

Rainfall rate (mostly expressed in mm/hr)
Radar reflectivity (mostly expressed in dBZ)

Radar differential reflectivity (mostly expressed in dBZ), the value is the ratio of the
horizontal and vertical reflectivity. (This value can be used as an indicator of the
shape of the drops which in turn is a good estimate of average drop size).

Radar differential phase (mostly expressed in °), the value is the difference in phase
between the received horizontally and vertically orientated pulses at a given
distance from the radar. The differential phase will always increase with the
distance. The range derivative (specific differential phase or Kpp) shows where the
phase changes occur.

Radar specific differential phase (mostly expressed in °/km), the value is the difference
in phase between the received horizontally and vertically orientated pulses over a
certain distance. Unlike most of the other parameters, which are all dependent on
reflected power, the specific differential phase is a "propagation effect". It appears
to be a good estimator of the rainfall rate, especially at high rainfall intensities.

Radar copolar correlation coefficient is a dimensionless number, indicating the
correlation between the horizontally and vertically reflected powers. The
correlation coefficient is an indication of the uniformity of the shape and type of
hydrometeors within the sampling volume. This parameter could be used to
discriminate between regions of rain, the melting layer and regions of snow in radar
sampling volumes.
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Linear depolarization ratio is the ratio between the vertically and horizontally received
reflectivity, when the radar only transmits horizontally. This is thus only possible for
dual-polarization radars that transmit and receive horizontally and vertically
polarized waves with an alternating mode. The depolarization is due to the
asymmetry of the particles through which the radar beam travels. For rain, the Lpg
is normally very low, but can be higher in melding snow and hail or graupel.

Rainfall drop size distribution (mostly expressed in mm™/m3), this distribution
describes the number and size of the precipitating particles, sometimes also
denoted as RSD, Raindrop Size Distribution.

Project abbreviations:

Baltrad (+)

CASA

EG-CLIMET

OPERA

TOMACS

UFO

An advanced weather radar network for the Baltic Sea region, Part-financed by the
European Union. http://www.baltrad.eu

Engineering Research Center for Collaborative Adaptive Sensing of the Atmosphere, a
National Science Foundation project. http://www.casa.umass.edu/

European Ground-Based Observations of Essential Variables for Climate and
Operational Meteorology, a COST (European Cooperation in Science and
Technology) project. http://www.eg-climet.org/

Operational Programme for the Exchange of Weather Radar Information, a EUMETNET
project. http://www.knmi.nl/opera/

Tokyo Metropolitan Area Convection Study for Extreme Weather Resilient Cities, a
government funded project. http://www.mpsep.jp/english/index.html|

Ultra Fast wind sensOrs, a European research project about aviation safety through
wake-vortex advisory systems, using ultra fast lidar, radar wind and eddy
dissipation rate monitoring sensors.
http://cordis.europa.eu/search/index.cfm?fuseaction=proj.document&PJ RCN=13112068

Other abbreviations:

ACF
ANN
AP
ARF
BL
BRA
CDF
DEM
GCM
GLM
HMM

RainGain WP2

Areal correction factors

Artificial neural network

Anomalous propagation of the radar waves
Areal reduction factors

Bartlett-Lewis rainfall models

Brandes spatial adjustment method
Cumulative distribution function

Digital elevation map

Global circulation model

Generalized linear model

Hidden Markov models
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IDW Inverse distance weighing method

KED Kriging correction method with external drift

KRE Kriging correction method with radar based error correction
KRI Kriging (as a summary of the set of kriging methods)

LAM Limited area meteorological model

MFB Mean field bias correction method

MM Markov models

NHHMM Non homogeneous hidden Markov models

NHMM Non homogeneous Markov models
NN Neural network

NS Neyman-Scott rainfall models

PBB Partial beam blockage

PDF Probability distribution function

QLPE Qualitative precipitation estimation
Qm Quantile mapping

QPE Quantitative precipitation estimation
QPF Quantitative precipitation forecast
QQ Quantile quantile ... (e.g. QQ plot, QQ transformation, etc.)
RCM Regional circulation model

RF Radio frequency

RDA Range dependant adjustment method
SNR Signal to noise ratio

TBR Tipping bucket rain gauge

VPR Vertical profile of reflectivity

WT Weather typing or types
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iii. Introduction

This review document is one of the outcomes of the International RainGain workshop (April 16 2012) in
Leuven on “Fine scale rainfall estimation” which fits within the scope of RainGain’s Work Package 2. The
workshop was concluded with an overview of the main items discussed during the workshop and the
main findings and recommendations, which formed the main topics to be included in the ‘guidelines’ for
this review document. The aim of this review document is not to reproduce material that is already
available in the literature or from other radar projects1 such as CASA (USA), OPERA, EG-CLIMET,
BALTRAD, UFO (EU) and TOMACS (Japan). The document especially focuses on the use of fine-scale
rainfall data for urban hydrological applications. (The projects mentioned are explained in the section
‘List of abbreviations’.)

One of the goals of Work Package 2 of the RainGain project is to obtain fine scale radar based rainfall
estimates, fine scale both in temporal and spatial resolution. The question thus rises what these
required temporal and spatial resolution should be. Discussion on this during the workshop led to the
aim values chosen to be ranging from 1 till 10 minutes for the temporal resolution (preferably integrated
rather than instantaneous measurements) and down to 100m for the spatial resolution.

One of the other goals of the project is to set up an interfacing between the demands of the flood
modellers and forecasters and the possibilities of the radar meteorologists to deliver rainfall estimates
with this spatial and temporal resolution. This document aims to bridge the gap between the expertise
fields of radar meteorology and urban hydrology, drainage and flood management and control. The
different steps in the radar chain are however also discussed, since it is important for urban hydrologists
to know how radar rainfall measurements are obtained.

To facilitate conversations between radar meteorologists and urban hydrologists, some nomenclature is
decided upon, namely:

= Radar calibration: The electronic calibration applied to the radar to give representative
reflectivity estimates of good quality.

= Radar adjustment: The adjustments made to the radar reflectivity measurements to give
representative rainfall estimates of good quality.

'The project references are mentioned in section ii — ‘List of abbreviations’.
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Chapter L. Introduction to radar technology

i. Working principle of a radar
The name Radar is an acronym for “RAdio Detection And Ranging” and it was developed shortly before
and during World War Il, where it was part of the anti-aircraft defence mechanism due to its ability to
detect airplanes. The radar operators however noticed that the images contained echoes from rainfall
and other obstacles. After the war, the radar technology was further developed, also in a scientific
environment, with specific interest for the meteorological use of the radar technology.

A radar mainly consists of an antenna and receiver unit, as well as some processing hard- and software
behind it. The radar antenna sends out electromagnetic pulses, which are scattered in all directions by
all sorts of objects, be it planes, raindrops, buildings etc. A portion of the emitted energy is reflected
back to the radar receiver, where the returning power is measured. This process is illustrated in Figure 1.

v Vv

(a) The radar emits an EM puls I'he puls hits a rain drop

the energy in the waves is scattered (d) Part of the scattered waves are reflected to the radar

Figure 1: Working principle of a weather radar (after Cain, 2002)

Assuming that only Rayleigh scattering is occurring in the scanning volume (which should mainly be the
case given the size of the hydrometeor and the signal wave length), the received power is expressed by
the radar equation (I-1) according to Battan (1973). The equation can be rewritten to the weather radar
equation (I-2) from which the radar reflectivity Z can be deduced based on the measured returning
power P,.

_ PG%A%o;
" (4m)3rt

P, -1

Where: P. = the power received by the radar, P; = the power transmitted
by the radar, G = the gain of the antenna, A = the wavelength,
o; =the targets cross section and r = the target range.

z
P. = C K, |? = -2

Where: C = the radar constant, K, = a coefficient related to the
dielectric constant of water and Z = the radar reflectivity value.
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It can be shown that the radar reflectivity Z and the rainfall rate R are related to the Drop Size
Distribution (DSD) by equations I-3 and I-4 respectively (e.g. Marshall and Palmer, 1948 or Uijlenhoet,
2001). Rainfall estimation from radar measurements is thus based on the relationship between Z and R
through a power law relation, see equation I-5, with two constants that have to be fitted. More
information on rainfall estimation will be given in Chapter V.

Z ~ [n(D).D®.dD I3
R~ [n(D).D3.v(D).dD I-4

Where n(D) is the drop size distribution, D is the equivalent
spherical diameter and v(D) is the hydrometeor fall speed.

Z =a.RP I-5

ii. Different wavelengths

Worldwide, several different wavelength bands are used for operational meteorological radars.
These consist of the S, C and X bands. The S-band consists of wavelengths around 10cm, the C-band
wavelengths lay around 5cm and the X-band wavelengths around 3cm. More specific details can be
found in Table 1, where also the radar operating frequency is mentioned. The choice of the wave length
for the radar (A) also has some consequences on the size of the antenna. Indeed the beam width 6 (°) is
related to the wavelength, the antenna efficiency e, (typically at least 0.8) and its diameter d, (m) by
formula I-6.

=—_ 1-6

Given that @ is usually approximately equal to 1°, it appears the size of S band radar antenna is roughly
6-10 m (meaning that the installation and maintenance costs are elevated), the C band one is of 3-5 m
and X-band one of 1-2 m.

Table 1: Radar characteristics for the different wavelength bands

S-band | C-band | X-band
Wavelength [cm] | 8-15 4-8 2,5-4
Frequency [GHZz] 2-4 4-8 8-12
Antennasize [m] | 6-10 3-5 1-2

The C-band radars offer a range of qualitative precipitation estimation (QLPE) up to 250km, whereas for
guantitative precipitation estimation (QPE) the range is somewhat limited to about 150km, however,
QPE could be possible up to nearly 200km depending on the type and specifications of the C-band radar
and with the necessary adjustments. The X-band radars have a shorter range, going up to 100km for
QLPE and up to 50km for QPE, depending on the type and specifications of the X-band radar.

An X-band radar is thus mostly used to cover a smaller area with a higher spatial resolution. The spatial
resolution of a C-band radar is however not necessarily coarser than that of an X-band radar. The
resolution is not a function of the wavelength, but of the used length of the radar pulse and the width of
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the radar beam as well as the scanning strategy. Where the C-band radar is mostly used to cover a
greater area than the X-band radar, an especially dedicated scan of the C-band could be used to get a
finer spatial resolution for the area close to the radar. More information on this is given in Chapter IV.

If the received radar signal falls back to the noise level, the content is totally lost. This could possibly
even further limit the range of the X-band radars for extreme events, since they suffer more from
attenuation. For these events, the added value of the S- and C-band radars is clear. It is however not
necessarily always the case that the C-band radar data is more reliable than the X-band data.

Hence it appears that the choice of radar band is a trade off between the surface needed to be
monitored, the desired resolution, the typical type of rainfall and the cost of maintaining the network.
The national meteorological services mostly use S- or C-band to offer nationwide coverage, since the X-
band radar has a more limited range. In America mostly S-band radars are used, whereas in Europe C-
band radars are more common.

iii. Dual polarization radars

With a dual polarization (or dual-pol) radar, the transmitter sends radar signals with perpendicular
polarizations, horizontal and vertical. In the conventional single polarization radars, the signal
transmission is limited to one direction, mostly the horizontal. See Figure 2 for a comparison of the two
mechanisms. With two polarized signals, it is possible to derive several new additional parameters which
give extra information on the precipitation type, size and shape. The polarimetric parameters will be
discussed below and more information on dual polarization radar characteristics can be found in the
literature, e.g. Bringi and Chandrasekar (2001).

Conventional Radar Dual-Polarizati'bn Radar

Figure 2: Working principle of a conventional (single, horizontal polarization) radar
versus a dual polarization (horizontal and vertical) radar (Source: NOAA)

The additional dual polarization parameters consist of:

* 7R The differential reflectivity
* Opp The differential phase (PHIpp)
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*  Kopp The specific differential phase
® Pwv The copolar correlation coefficient (RHOyy)
* Lk The linear depolarization ratio

The differential reflectivity Zpr is mostly expressed in dB. The value is the ratio of the horizontally
and vertically reflected powers (see equation I-7). The value can be used as an indicator of the shape of
the drops. Whereas a Zpr around zero represents hydrometeors which are nearly circular, a positive
value represents horizontally oriented drops and a negative value represents vertically oriented drops.
This is shown in Figure 3. The shape of the drops is in turn is a good estimate of average drop size since
larger drops are mostly more oblate. The presence of hail is also easily discovered in combination with
the reflectivity. Hailstones generally have a bigger diameter than rain, resulting in a higher reflectivity.
Hailstones however also have a more spherical shape than large raindrops, due to their tumbling motion
as they fall, resulting in a Zpg value that is close to zero.

YA
Z,.,=10.l1og| =L I-7
DR g( z, )
Zor>0 Zor~0 Zor<0

Figure 3: Impact of hydrometeor shape on the polarimetric variable Zpg

The differential phase PHIpp is mostly expressed in degrees (°). The value is the difference in phase
between the received horizontally and vertically orientated pulses at a given distance from the radar.
The differential phase will thus always increase with the distance.

The specific differential phase Kpp is mostly expressed in °/km. The value is the difference in phase
between the received horizontally and vertically orientated pulses over a certain distance. Kpp is thus the
range derivative of the differential phase and shows where exactly the changes in differential phase
occur. Unlike most of the other parameters, which are all dependent on reflected power, the differential
phase and the specific differential phase are "propagation effects"; this makes Kpp unaffected by
attenuation and independent of the radar calibration. The value of Kpp is high in areas with high rainfall
intensities because in these areas the phase shift between the horizontally and vertically polarized
signals will be high. This is however only the case if the precipitation consists mostly of rain, since hail
produces a lesser phase shift and thus a less high value of Kpp. These regions with hail can however be
filtered out by comparison with the reflectivity values.

The copolar correlation coefficient RHOyy is a dimensionless number, indicating the correlation
between the horizontally and vertically reflected powers. The correlation coefficient is an indication of
the uniformity of the shape and type of hydrometeors within the sampling volume, as it is close to 1 for
a uniform volume and decreases rapidly for non-uniform sampling volumes. According to Matrosov et al
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(2007), RHOyy in rain is generally greater than 0.95, in snow greater than 0.85 and it is significantly
smaller in the melting layer. This parameter could thus possibly be used to discriminate between regions
of rain, the melting layer and regions of snow in radar sampling volumes.

The linear depolarization ratio Lpr is the ratio between the vertically and horizontally received
reflectivity, when the radar only transmits horizontally. This is thus only possible for dual-polarization
radars that transmit and receive horizontally and vertically polarized waves with an alternating mode.
The depolarization is due to the asymmetry of the particles through which the radar beam travels. For
rain, the Lpg is normally very low, but can be higher in melding snow and hail or graupel.

In order to get a complete and correct picture of the actual rainfall characteristics, the polarimetric
variables should be compared and give consistent results. It is clear that with dual polarization radars,
more details about the rainfall characteristics can be captured compared to conventional single
polarization radars.

iv. Doppler radars
Radars with Doppler capability are able to measure the radial velocity of the scatterers, due to the
induction of a frequency shift (because of the Doppler effect) over two consecutive radar scans (mostly
2 special Doppler scans close together). They produce 2 extra parameters, which characterize the
distribution of the velocities of the backscatterers within the different radar sampling volumes. More
information on the Doppler radar characteristics can be found in Bringi and Chandrasekar (2001) and
Doviak and Zrnic (2006). The new Doppler parameters consist of:

eV The mean Doppler radial velocity
* oy The Doppler spectrum width

The mean Doppler radial velocity V, is expressed in m/s. The value is the mean of the velocities of
the different backscatterers within the sampling volume. The mean radial velocity of the hydrometeors
is strongly influenced by the wind speed and direction, whereas the radial velocity of non-
meteorological echoes (excluding birds, insects and planes) mostly consist of near zero values. This gives
Doppler radars, within a certain extent, the ability to distinguish between stationary clutter and
hydrometeors. This will be discussed further in Chapter Il - iv. Clutter correction.

The Doppler spectrum width oy is also expressed in m/s. The value denotes the standard deviation
of the distribution of the mean Doppler radial velocity within the volume. A lower standard deviation
denotes a more uniform scanning volume, whereas a higher value indicates a less uniform volume,
possibly with different types of hydrometeors mixed together. Higher standard deviations might also
indicate the presence of clutter in the volume, as clutter has a near zero velocity.

v. Phased array radars
One of the main drawbacks of the conventional radar systems is the mechanical scanning motion.
Weather radars without moving parts would be a better alternative from maintenance and operational
point of view. During the scanning time, a reasonable high amount of time is possibly used to scan
regions where no rain is present. It would thus be an advantage to scan certain regions more frequent
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or in more detail, while scanning the other regions faster or less frequent. With the conventional
mechanically steered radar dishes, this is very challenging.

Since the 1950’s, a new kind of radar design has been proposed, replacing the mechanical steering of
one antenna by the electronic steering of multiple antenna units. Fenn et al. (2000) gives an overview on
the development of the phased array radar technology. The principle of phased array radars is the
electronic phasing of individual array antenna units in order to form one radar beam (Parker and
Zimmermann 2002a and b). A phased array antenna is a group (array) of antennas in which the relative
phases of the respective signals feeding the antennas are varied in such a way that the effective
radiation pattern of the array is reinforced in a desired direction and suppressed in undesired directions.
So instead of using only one antenna, a phased array radar has multiple antennas, placed in a specific
structure.

There are mainly two different working mechanisms of the phased array radar, called Passive and Active
Electronically Scanned Array (PESA and AESA), (Parker and Zimmermann 2002a and b). The main
difference is the microwave feed to the antenna, with a PESA system, one main radio frequency (RF)
source is used to feed the different transmitting units. With an AESA system, each transmitter has its
own RF source, which ensures the operational reliability of these systems, as different RF sources may
fail, while the radar as a whole will still work.

The phased array radar technology is mostly used by the military for its ability to keep an eye on several
different targets, as with, for example, the Aegis combat system (Gregers-Hansen 2004), a so called
‘integrated naval weapons system’, which uses several phased array radars on the sides of army vessels
to track and guide multiple weapons at the same time while still being able to monitor the movements
of other ships and even aircrafts within the ships proximity.

Phased array radars have not really been introduced into weather radar research, mainly because of the
high manufacturing costs of these radars. Recently, under impulse of new developments in the radar
manufacturing and research programs such as CASA, these technologies are more and more starting to
find their way into the weather radar community.

Several of the advantages have already been mentioned above, such as the ability to focus on a specific
location (or specific locations) without the need to go through the entire scanning procedure. The
mechanical steering has now also been replaced by a more reliable electronic steering mechanism. The
main drawback until now was the cost of these phased array radars. There are however questions about
the operational sensitivity for rainfall estimation purposes, which will have to be investigated further.

vi. Microwave links
A microwave link consists of two antennas, one sending and one receiving unit, typically a few hundred
meters up to fifteen kilometres apart. Microwave links are used for mobile telephone communication,
they operate around a frequency of 7-40 GHz and the link length is mostly limited to a maximum of 5-
10km. There is quite a dense network available in some countries, however, in others, this might be
limited. As an estimate of the density of the microwave link network, a density of at least 0.3 links/km?
can be assumed for European countries, according to Chwala et al. (2012). For example, in the
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Netherlands (35.500 km2) the total number of link paths is at least 8000 and for many of those link
paths, the microwave links measure in both directions (Overeem et al., 2013).

The information sent over these links also has to travel through rain, which causes attenuation of the
signal. The magnitude of the received power is mostly stored by the network operators and can thus be
used to calculate the total integrated attenuation over the link path, from which the path averaged
rainfall intensity can be estimated. Olsen et al. (1978) showed that the relation between rain rate R in
mm/h and attenuation A in dB/km can be approximated by the power law equation 4 = a.R?. The
constants a and b primarily depend on the frequency of the propagating wave, but also on the drop size
distribution (DSD) and the temperature.

Research in this field started with research setups (e.g. Ruf et al. (1996), Holt et al. (2003), Rahimi et al.
(2003, 2004 and 2006), Kramer et al. (2005), Upton et al. (2005), Grum et al. (2005), Leijnse et al. 2007a,
among others), but in recent years, data from commercial cellular networks have been used to estimate
rainfall intensities (e.g. Messer et al. (2006), Leijnse et al. (2007b), Zinevich et al. (2008), Overeem et al.
(2011 and 2013), Chwala et al. (2012), among others). A limitation is the availability of the data, which
could range from (near) real-time even up to only on a daily or weekly basis. Moreover, it can be hard to
gain access to commercial microwave link data.

The microwave links can be used as a standalone estimator of the rainfall (e.g. Leijnse et al. 2007b,
Zinevich et al. 2008), or can be combined with rain gauges and even the radar measurements (e.g.
Cummings et al. 2009) to give better rainfall estimations at ground level. The links can also be used as an
attenuation indicator for attenuation correction of the radar measurements. The network of these links
is mostly denser over urban areas than elsewhere, which could thus be an advantage for the correction
of the radar estimates for urban hydrological applications since there are mostly only a limited number
of rain gauges available in the city centre. Other advantages of microwave links are that they are mostly
clutter free and very close to the ground compared to radar scans. Finally, the power law equation used
to compute rainfall intensity from attenuation is almost linear, whereas the Z-R relation employed in
radar meteorology is nonlinear.
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Chapter II. Electronic calibration of the weather radar

Electronic radar calibration is the electrical calibration of the reflectivity of the radar, so no adjustments
to gauge information or any other corrections (attenuation or volume correction, etc) are done in this
step. The electronic calibration just makes sure the received reflectivity for a given volume in space and
time is the correct reflectivity for that volume.

Several different techniques can be used alone or in combination to maintain a good electronic
calibration of the radar’s sender and receiver chain. Some techniques focus only on one of the two
chains, while others asses the quality of the sender and receiver chain in total. The performance of the
electronic calibration is mostly monitored by reapplying one or several of these techniques after a
period of time to maintain a good calibration. Radar calibration checking frequencies mostly range from
once a day or week to once a month.

i. Calibration of total radar chain
Methods assessing the calibration of the total radar signal chain:

¢ Reflectivity of known clutter points
This method implies that one or more fixed clutter points are clearly visible within the radar image,
these points can be buildings, towers, chimneys etcetera and have a known reflectivity which is mostly
very stable under normal conditions. For these points, the reflectivity is monitored over time and an
offset in the reflectivity value gives an indication of a possible offset in the radar calibration. See
Borowska and Zrnic (2012) and Silberstein et al (2008) for more details.

* Vertical radar scan

This method implies that a dual polarization radar is used and that it is raining, since the vertical scan is
used to calibrate the polarimetric variable Zpg by the droplet shape. For a vertical scan, one would
theoretically predict a Zpg value of zero, because of the expected similarity of the drop dimensions in the
horizontal plain, since all droplets have the highest probability to be nearly circular. References: Bringi
and Chandrasekar (2001) and Gorgucci et al (1999). Even if the radar isn’t able to scan in a vertical
direction (due to mechanical restrictions or time restrictions on the scanning strategy), it is possible to
use a separate vertical profiling radar (Williams et al 2005) or even use the measurements with the
highest (nearest to vertical) elevation angle available (Bechini et al 2008 or Ryzhkov et al. 2005a).

¢ Self-consistency of the radar variables

This method implies the use of the self-consistency property of the horizontal reflectivity Z, the
differential reflectivity Zpg, the differential propagation phase PHIpp and the specific differential phase
Kpp. This method needs the polarimetric radar parameters, making it unusable for single-pol radars. The
principle was first noted by Gorgucci et al. (1992), and from this principle, methods for radar calibration
were developed by e.g. Gorgucci et al. (1992), Goddard et al. (1994), Scarchilli et al. (1996), Illingworth
and Blackman (2002), Vivekanandan et al. (2003), Ryzhkov et al. (2005), Gourley et al. (2009) among
others.
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* Radar to radar comparison

This method implies that a certain volume is scanned by two different radars. For this volume, the
reflectivity values can thus be compared and should give similar results. An offset in the difference
between the two radars however does not reveal which one of the two is wrongfully calibrated and thus
this method requires more effort to determine the faulty calibration and the specific cause of the offset.
Different radar merging methods exist, such as Zhang et al. (2005) and Lakshmanan et al. (2006), where
the reflectivity from different radars can be compared. These methods are however not made for real
time monitoring of the calibration performance of the different radars.

ii. Calibration of receiver chain
Methods assessing only the calibration of the radar receiver chain:

* Emitting power of the sun

This method implies that the sun is visible in the radar image. Since the emitting power of the sun is
monitored by several institutes - such as the Dominion Radio Astrophysical Observatory (DRAO) in
Canada - the value can be compared to the reflectivity measured by the radar for the region where the
sun lies within the scanning area. The comparison of the two gives an indication of the quality of the
calibration and the need to recalibrate the radar if there is a significant offset. The method was firstly
proposed by Whiton et al. (1976). Among others, Rinehart (2004), Ryzhkov et al. (2005) and Holleman et
al. (2010) describe possibilities of using the sun as a calibration tool for the receiver chain of the radar.

The expected reflectivity of the sun can also be obtained by measuring the solar power with another
radar nearby (possibly even operating at another wavelength) and by calculating the expected
reflectivity for the first radar out of the reflectivity of the other radar. This however requires the second
radar to be correctly calibrated.

* Introducing a known signal in the wave guide
This method implies that some sort of device induces a known signal into the antenna’s wave guide;
therefore this device should be mounted on to the radar antenna. Since the signal has a known strength,
the expected radar measurement can be calculated and compared to the actual measurements. This can
be used to assess and if necessary correct the radar calibration (Manz et al. 2000).

In an operational context, several of these (and perhaps also other) calibration procedures mentioned
are used in combination to monitor the performance of the electronic calibration. Each of these
techniques are mostly reapplied after a certain interval time, depending from both the technique and
the radar owner.
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Chapter III. Different corrections to the raw radar signal

Raw radar signal corrections mostly include some kind of cut off of the noise on the radar signal,
removal of remaining clutter in the radar image, correction for attenuation of the radar signal and
volume or vertical profile correction. These different corrections will be discussed in the following
sections. Note: The ideal radar measurement processing chain will be a future outcome of the OPERA
project.

i. Noise cut off
This part will only be discussed very briefly, as most operational radar systems have their own noise cut
off algorithm preinstalled and advised settings are given by the manufacturer. However, these settings
are important, because once the radar signal falls back to this noise level, the signal is totally lost and
there is no way to reconstruct the weather echoes from the signal.

The conventional way to filter out noise from the measurements is to set a cut off threshold below
which the measurements will be removed. There are however also other approaches, such as statistical
separation of the signal and noise fields (e.g. Pegram et al, 2011).

ii. Volume correction
Under this section, a series of correction mechanisms will be discussed to solve problems mainly caused
by the influence of the measurement principles and the environment on the remote sensing technology.
These problems consist of the influence of increasing radar measuring height, increasing radar sampling
volume, the effect of (partial) beam blockage, the effect of anomalous propagation, etcetera... All these
different sources could give serious over- and underestimations of the rainfall rate at ground level. They
will be grouped and their correction mechanisms will be discussed.

Volume and Vertical profile of reflectivity (VPR) correction methods

The need for volume and vertical profile corrections are caused by the increasing measuring height of
the radar and the increasing volume sampled by the radar. The radar reflectivity does not necessarily
relate to the rainfall at ground level. Several issues may occur when interpreting the reflectivity aloft as
the rain rate on ground level, such as evaporation, see Figure 4 (1), condensation or coalescence (2),
partial beam filling (3) or even overshooting of the rain (4), but also sublimation, riming, aggregation,
and breakup can seriously change the characteristics of the rainfall near the ground (Doviak and Zrnic,
1993, Delobbe, 2006).
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Figure 4: Several problems caused by the measuring height and volume of the radar, such as evaporation (1), condensation
or coalescence (2), partial beam filling (3) or even overshooting of the rain (4) (after Delobbe, 2006).
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Another factor affecting the need for volume and VPR correction is the temperature gradient in the
atmosphere. At higher altitudes, above the freezing level, precipitation forms as snowflakes, whereas at
lower altitudes, the snowflakes start to melt. The melting process (around and below the freezing level)
affects the radar measurements, as the reflectivity is related to the size of the backscatterers and their
intrinsic reflectivity. Snowflakes have a lower reflectivity (about 5 times lower, as the dielectric constant
(|K]? value) in formula I-2 is 0.197 for snow versus 0.93 for liquid water) but they are bigger than
raindrops with the same water volume. As the snowflakes start to melt, their outer layer becomes liquid
which seriously increases their reflectivity signatures, as the radar sees very big raindrops. The principle
of bright band formation is shown in Figure 5.
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Figure 5: Principle of bright band formation below the 0°C line: left) microphysical formation of the bright band,
right) consequences on the radar VPR, idealized reflectivity vs. height diagram (adapted from the North Carolina State
University website)

The bright band phenomenon occurs when the radar beam passes through the region around the
melting layer, which is higher up in the atmosphere in summer, but closer to the surface in winter. The
bright band could thus seriously affect the radar images if not corrected for. An example of the influence
of the bright band on radar data at Wideumont, Belgium (C-band radar operated by the Royal
Meteorological Institute, RMI) is shown in Figure 6.

b)  Vertical cut Wideumont (BE) - De Bilt (NL)

Radar image Radar Ground echoes Bright band

Figure 6: Bright band phenomenon in radar images: a) Radar image from Wideumont (Belgium) affected by Bright band,
b) vertical cut from the same radar image from the radar to the north (towards De Bilt, the Netherlands) (source: RMI)

VPR correction aims to estimate the reflectivity at ground level from the measured reflectivity aloft and
thus to estimate the precipitation at ground level. During convective precipitation cases, the vertical
profile of reflectivity is more uniform, whereas during stratiform events, the effect of non-uniform VPR
is more pronounced, even more so when the radar measurements are located in the bright band region.
VPR correction is sometimes also used in combination with PBB correction methods, see further.
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Numerous methods have been proposed to correct the radar measurements for these non-uniform VPR
issues, both in research and operational conditions. The general solution is to estimate the form of the
current vertical profile of reflectivity and to use this information to estimate the reflectivity at ground
level. Several approaches can be used to determine this profile, by using either climatological profiles,
local profiles close to the radar (e.g. Kitchen et al., 1994; Germann and Joss, 2002) or from the ratios of
radar reflectivity values from different elevation angles by using an inverse theory (Andrieu and Creutin,
1995; Vignal et al.,, 1999). Other methods mostly rely on the identification of the bright band and
extrapolate downwards from there. An overview on bright band identification methods is given in Rico-
Ramirez and Chucky (2007). Germann et al. (2006) and Bellon et al. (2007) assessed the quality of the
VPR correction methods.

Anomalous propagation correction methods

When the weather conditions are unfavorable, the propagation of the radar beam through the
atmosphere could result in so called anomalous propagation (AP). During these circumstances, the radar
waves are deflected from their usual path due to the refractivity of the atmosphere, causing echoes, a
sort of ‘ground clutter’. According to Pratte et al. (1995), the vertical gradient of the refractivity N
(dN/dh) is the key factor to determining whether AP will occur. Even more, the lowest couple of
hundred meters above the radar are of particular importance. Four different atmospheric conditions
leading to different propagation modes (e.g. Steiner et al., 2002 and Bech et al.,, 2012) can be
distinguished and their effects on the radar beam are shown in Figure 7.

a) Normal refraction: radar beam is not deflected (0 m™ < dN/dh < -0.0787 m™)

b) Sub-refraction: radar beam is deflected upwards (dN/dh >0 m™)

¢) Super-refraction: radar beam is deflected downwards (-0.0787 m™ < dN/dh <-0.157 m™)
d) Trapping or ducting: extreme case of super-refraction (dN/dh >-0.157 m™)

From these four, severe cases of super-refraction may cause AP clutter problems, while during
atmospheric conditions leading to trapping or ducting, extensive AP clutter signatures are observable in
the radar data. More information on the refraction properties can be found in Steiner et al. (2002) and
Patterson (2008).

The AP echoes are, opposed to normal ground clutter, neither (nearly) constant over time (e.g. Tatehira
and Shimizu, 1978 and 1980, Sirmans and Dooley, 1980) nor confined to the proximity of the radar and
can thus be observed at any distance. They can exhibit precipitation-like patterns, such as growth, decay
and motion (e.g. Johnson et al., 1975 and Weber et al., 1993).
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Figure 7: Radar beam propagation pattern under different atmospheric conditions: a) normal refraction, b) sub-refraction,
c) super-refraction and d) trapping or ducting (after Bech et al., 2012)

Different methods to differentiate between precipitating and non-precipitating echoes have been
proposed and are discussed in this chapter under the section iv: Clutter correction. Some of these
techniques also allow the identification of clutter caused by anomalous propagation. However, here,
some methods specifically focusing on AP echoes will be discussed.

Moszkowicz et al. (1994) developed an off-site statistical procedure (with Bayesian discrimination
functions), but as this is a very labor-intensive procedure (the scans contaminated with AP echoes were
identified by an expert radar meteorologist), the applicability to other radar sites is questionable.

Ryzhkov and Zrnic (1998) used the copolar correlation coefficient RHOyy and the local variability of the
differential phase Kpp to identify AP echoes. Grecu and Krajewski (2000) and Krajewski and Vignal (2001)
proposed and tested a method to detect AP echoes based on volarimetric reflectivity data and a neural
network approach. Fuzzy logic algorithms have been designed and tested by e.g. Kessinger et al. (1999
and 2001), Cho et al. (2006), Gourley et al. (2007), among others. These fuzzy logic algorithms
sometimes incorporate not only reflectivity data, but also Doppler information or other data sources.
Haykin et al. (1991) compared a neural network with a Bayes classifier. Rico-Ramirez and Cluckie (2008)
compared Bayes and Fuzzy classifiers.

Some other researchers also considered other sources of information, which are mostly not easily
available. As an example, Pamment and Conway (1998) incorporated infrared imagery, climatologic
information, surface observations and lightning detection mechanisms. This seriously limited the
applicability of their approach to other regions.

Partial beam blockage correction methods

Another possible source of difference between the radar reflectivity and the rain rate could take place
when partial beam blockage (PBB) or beam shielding occurs, indicating that the radar beam is partially
or even completely blocked by for example a mountain peak, trees, buildings, turbines from a windmill,
etcetera. Figure 8 shows an example for a mountainous area (source Krajewski et al. 2006).
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Figure 8: Schematic representation of radar beam blockage occurrence in mountainous areas with a frontal view from the
radar (top left) and a side view (main picture) (after Krajewski et al. 2006)

When the radar beam patterns interact with the topography, partial beam blockage (PBB) may occur.
Besides the obvious ground clutter affection at the interaction areas, the regions behind these ground
clutter points are also affected due to the PBB. Different methods for the correction of radar rainfall
estimates suffering from PBB exist and the different groups of methods will be discussed hereafter.

With single polarization radars, most methods used digital elevation models (DEMs) for the correction of

PBB. But even within this class, different approaches are possible.

One way is to combine the DEMs with the radar scanning strategy to identify which sectors in the
radar image suffer from PBB and to correct these sectors with reflectivity data from the higher elevation
angles or extrapolating these measurements downwards using VPR (vertical profile of reflectivity)
correction methods (e.g., Andrieu et al., 1997, Creutin et al., 1997, Seo et al., 2000, Dinku et al., 2002,
Langston and Zhang, 2004, Lang et al.,, 2009, among others). The identification of the affected radar
beams could even be done by integrating geographical information systems (GIS) (e.g. Kucera et al.,
2004 and Krajewski et al., 2006).

Another possible way is not only to identify the sectors, but also to estimate the percentage of PBB
occurring in each radar beam, using interception functions (e.g. Bech et al., 2003, Germann et al., 2006,
Tabary 2007, Tabary et al., 2007, among others). The correction could then also be based on data from
higher elevation angles (original data or VPR adjusted) or long term rain gauge comparisons.

With the introduction of dual polarization radar technology, new possibilities to correct PBB were also

investigated. It was concluded (e.g. Zrnic and Ryzhkov 1996) that phase measurements -besides from
having other advantages- were relatively insensitive to partial beam blockage. Polarimetric data, which
also allowed a better clutter identification and removal (see iv. Clutter correction), was then increasingly
used in research and operational applications (e.g. Zrnic and Ryzhkov, 1996, Ryzhkov and Zrnic, 1996,
Vivekanandan et al., 1999, Cifelli et al., 2002, Giangrande and Ryzhkov, 2005, Gourley et al., 2007,
Friedrich et al., 2007 and 2009, Lang et al., 2009, among others).
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iii. Attenuation correction
Attenuation is known as the weakening of a radar signal as it passes through rainfall fields. This
weakening may be due to absorption or scattering of the energy in the beam, so that less energy is
received by the radar. So the rainfall further away from the radar will be measured with a lower
accuracy if there is rain present between that point and the radar. Attenuation can also be caused by
other things than rainfall fields, such as dust or aerosols in the atmosphere etc.

Attenuation is a function of the wavelength of the radar. Longer wavelengths are less prone to
attenuation (S-band), while at smaller wavelengths (X-band), the signal could even be reduced to the
noise level, which means that all information within the signal is completely lost. This could reduce the
range of short wavelength radars in severe precipitation. There is scientific consensus (e.g. Hitschfeld
and Bordan 1954) that at S-band, attenuation is negligible. At C- and even more at X-band, the
attenuation, if not corrected for, could put a serious limitation on the quality of the radar estimates.
According to Smyth et al, (1998), for a 100 mm/hr rainfall rate and 0°C they predict that different DSDs
can give one-way attenuations ranging from 0,43 to 0,67 dB/km at C-band. So, for two way attenuation,
the order of magnitude at C band is about 1dB/km. For X-band, no direct numbers could be found, but
several papers (e.g. Snyder et al, 2010) indicate that it is at least an order of magnitude higher than at S-
band and several times higher than at C-band.

A special type of attenuation is the wet radome attenuation. Normally a radome is placed around the
antenna of a radar to protect it from environmental influences. It is made out of material which causes a
low attenuation for the radar, but however, when it gets wet, a peal of water forms around the radome,
causing the so called wet radome attenuation. Other than the normal attenuation, this is a constant
reduction in received strength and can be corrected for with some of the below mentioned algorithms.

Different attenuation correction algorithms will be discussed in the following sections, including the
algorithms based on a relationship between the reflectivity and the specific attenuation (Hitschfeld-
Bordan), algorithms based on a relationship between the (specific) differential phase and the specific
attenuation, etcetera.

Based on a reflectivity — specific attenuation relation (Hitschfeld-Bordan algorithm)

This method, described by Hitschfeld and Bordan (1954), implies the use of a reflectivity - specific
attenuation relation and will thus correct the measurements for attenuation in a gate-by-gate iterative
correction scheme, based on the reflectivity values. The proposed relation for the correction algorithm
is the following relation (llI-1). After integration, the rainfall rate can be expressed (lIll-2) as a function of
the range and the received power level from that range and all points closer in.

y = A.In(R) — B.In(r) — Cf(;r R*dr - A.In(a,) m-1

Where: y is the received power corrected for attenuation, R is the rainfall rate,
ris the range, a is the coefficient of the relation between the attenuation and R
(Attenuation = c,.R®) and the rest are constants.
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The method however needs an assumption on the total amount of attenuation or the maximal possible
change of the reflectivity values. As demonstrated by Hildebrand (1978), this algorithm is numerically
unstable, its performance depends on the initial reflectivity and the results are strongly influenced by
possible radar calibration errors. The method should thus be restricted to total Path Integrated
Attenuation (PIA) less than 10dB.

The Hitschfeld-Bordan method can also be applied on fixed clutter points where the reflectivity of this
point acts as a constraint for the total path integrated attenuation. This is a ground-based version of the
‘surface reference technique’, as described by Delrieu et al. (1997). This backward method is more
stable but its performance depends on the reflectivity of the clutter point. It can however also correct
for wet radome attenuation.

There are several adaptations to the Hitschfeld-Bordan algorithm, such as Peters et al. (2010). They
suggest calculating rain attenuation and rainfall from Doppler spectra via the drop size distributions
(DSDs). This avoids the uncertainty of the Z-R and Z-A conversion relations used.

Based on PHIpe and Kpp — specific attenuation relation

Several attenuation correction methods (such as Ryzhkov and Zrnic 1995b, Bringi et al., 2001; Park et al.,
2005a3; Liu et al., 2006; Kim et al., 2008) based on the differential phase (PHIpp) or the specific differential
phase (Kpp) exist, relating attenuation (the horizontal specific attenuation Ay and the differential specific
attenuation App= Ay-Ay) to the polarimetric variable PHIpp or its range derivate Kpp. Bringi and
Chandrasekar (2001) showed that the horizontal specific attenuation can be related to specific
differential phase for frequencies below 20 GHz as in equation IlI-3. The same form relation also holds
for the vertical specific attenuation (I11-4).

Ay(r) = ay Kpp(r) -3
Ay(r) = ay Kpp(r) n-4

The ZPHI method (Testud et al. 2000) assumes the parameter alpha to be constant, but since the
parameter can vary over a more than an order of magnitude (e.g. 0.075-0.65 dB/deg at X-band
according to Liu et al. 2006), the self-consistent method (Bringi et al. 2001) allowed the estimation of
the parameter alpha based on the self-consistency of the attenuation with the measured PHIpp. Since
the method proposed by Bringi et al. (2001) was based on C-band radar data, Park et al. (both 2005a and
b) adapted the method for X-band radar applications. Further and other adaptations to this algorithm
have been proposed by e. g. Liu et al. (2006), Gorgucci and Baldini (2007) and Kim et al. (2008), etc.

After determining Ay and Ay or App, attenuation correction for the reflectivity parameters (Z, and Zpg) is
possible. For this, Z,; can be corrected with Ay using the ZPHI algorithm of Testud et al., (2000). From Ay
and App, Zpr can be corrected with the algorithm of Smyth and lllingworth (1998). From Ay and Ay, Zpg
can be corrected with the algorithm of Liu et al. (2006).
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Vulpiani et al. (2005) proposed a new method, called ‘neural network iterative polarimetric precipitation
estimator by radar’ (NIPPER). This method is a combination of elements from iterative approaches with
features of the self-consistent method, thus combining the strengths of both methods.

Other attenuation correction methods

Several other attenuation correction methods have been proposed, such as a method using a dual
wavelength attenuation analysis (e.g. Tuttle and Rinehart 1983), a method using the emission of the
attenuating targets to determine and correct for attenuation (Thompson et al. 2012), etcetera...

The method of Tuttle and Rinehart (1983) uses collocated S- and C-band measurements. The difference
between the S- and C-band measurements in the region behind the storm is used as an approximation
of the total path integrated attenuation. The attenuation is then corrected based on the S-band
measurements.

The method of Thompson et al. (2012) assumes that the attenuating targets will themselves emit a low
amount of electromagnetic waves, which will cause an increased noise level in the radar measurements.
These noise levels can be detected and used to correct attenuation, even radome attenuation correction
is possible from the measurements at higher elevation angles.
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iv. Clutter correction
Clutter is known as the part of the signal in the radar image which is not produced by rain, but by non-
meteorological echoes such as, for example, reflections of the ground, towers, birds, planes etc. these
unwanted echoes should thus be removed from the radar image, since the signal at these locations does
not contain rain and the derived rainfall estimates could thus be overestimating reality.

An overview on the most used ground clutter correction algorithms is documented in Joss (1995). There,
he divides them into six groups. Groups 1, 2 and 6 are of particular interest and will be discussed in
detail. Groups 4 and 5 contain the theoretical basis and algorithms for clutter hole filling techniques,
which will not be discussed in detail. A seventh group could be added to this summary, being the
‘Combination’ group.

1. Clutter map: A mean clutter map marks and eliminates all pixels judged to contain clutter. This
map is obtained and updated with dry weather measurements.
2. Doppler measurements: Based on the Doppler wind velocity measurements, stationary ground

clutter echoes (with a velocity close to zero) can be removed from the data.
3. Statistical approach: The elimination of clutter signals can be based on the non-coherent signal

statistics in both time and space.

4. Resolution: It is known that clutter has the tendency to appear in a spot like pattern, leaving
valid information in between the affected cells. This can be used to locate and remove clutter.

5. Interpolation: After clutter has been suppressed, the blind spots in the radar image have to be
filled using either vertically or horizontally adjacent information.

6. Dual polarization measurements: Ground clutter and other non-meteorological echoes have

distinct signatures in the polarimetric measurements and can thus be identified and removed.

The location of the radar has a serious impact on the amount of clutter. There mostly is a band of
several kilometers around the radar in which clutter is quite persistently present. This is mostly due to
the fact that the radar beams deflect upwards with respect to the surface (or in fact, the surface deflects
downwards due to the Earth’s curvature). The radar is mostly located on a high building or tower within
the study area, in the scope of this project, the city center. This could form an issue, as it might be better
to place it outside of the region of interest, because of the clutter in the direct surroundings of the radar
due to the possible collision of the radar beam with the other buildings, towers, trees, etc. Placing the
radar far outside the region of interest would however cause the radar beam to be high above the
ground, increasing the uncertainty when producing rainfall estimates on ground level, as denoted in the
Volume correction section.

Clutter map

Clutter removal is normally (with a conventional single polarization radar) done by subtracting a mean
clutter map (group 1 - Joss 1995), which contains the mean echoes observed by the radar during dry
weather. This technique is very simple and easy to use, but there are however several issues with this
technique, as it is clearly unable to filter out time-dependent clutter, which could be due to the
Anomalous Propagation (AP) of the radar beam in the atmosphere, or other sources of time-dependent
or non-persistent clutter.
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Doppler measurements

The Doppler velocity measurements (group 2 - Joss 1995) allow to exclude ‘stationary objects’, as rain is
hardly ever stationary over time while clutter objects, such as mountains, buildings, trees etc, are not
expected to have non zero velocities, Bringi and Chandrasekar (2001) and Doviak and Zrnic (2006).

With Doppler measurements available, the Notch filter (Groginsky and Glover 1980) has mostly been
applied to mitigate ground clutter. This approach however induces errors when the spectra from the
clutter and the precipitation overlap. A way to avoid these errors is to use frequency domain ground
cancellers (e.g. Passarelli et al., 1981, Siggia and Passarelli, 2004, and Bharadwaj et al., 2007).

The Doppler approaches in general however require some level of precaution, because the Doppler
measurements are only able to capture the radial component of the movement speed. When the
precipitating clouds however move locally with a velocity perpendicular to the radial of the radar, the
rain could have a near zero radial velocity. This implies that the algorithm defines this region as clutter
and the rainfall echoes will thus be wrongfully removed.

Statistical clutter removal

Statistical clutter removal algorithms (group 3 - Joss 1995) look at the signal statistics over time and
space, since grid cells contaminated with clutter have a different signature to those with weather
echoes. Clutter has a limited vertical extent, a near zero radial velocity, a narrow spectrum width and a
high reflectivity variability in all directions, according to e.g. Sekhon and Atlas (1972), Joss and Lee
(1993), Moszkowicz et al. (1994) and Lee et al (1995).

Several techniques which use these specific cluster characteristics have been developed for the removal
of clutter from weather radar data. These methods mostly consist of filtering techniques, either in the
signal (e.g. Torres and Zrnic (1999), Sugier et al. (2002), Wessels (2003), amongst others) or spectral
domain (e.g. Bachmann (2008), Moisseev and Chandrasekar, (2009), Unal (2009), amongst others), to
discriminate between weather and nonweather (clutter) echoes. Other techniques, such as the use of
Neural networks (e.g. Haykin and Deng, 1991) and Markov Chain Monte Carlo methods are also used
(e.g. Gilks et al., 1996 and Fernandez-Duran and Upton, 2003).

Another approach within the statistical clutter removal class is to use Fuzzy logic algorithms or Neural
networks to identify clutter regions and filter them out of the data, while maintaining the near zero
radial velocity weather echoes. The applicability and performance of neural networks has been shown
by Grecu and Krajewski (2000) and Da Silveira and Holt (2001), amongst others, while the Fuzzy logic
algorithms have been tested and implemented by e.g. Berenguer et al. (2006) and Gourley et al. (2007).
Fuzzy logic algorithms are also widely used in the hydrometeor classification schemes, which will be
described in the next section.
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Dual polarization radar measurements

With dual polarization radar measurements (group 6 - Joss 1995), there is also the possibility to exclude
different types of clutter by using the improved ability to distinct between hydrometeors and other
reflections with a hydrometeor classification algorithm. For this, the different radar measurements are
combined to give an idea of what may be going on within the different radar scanning volumes. For
example, a volume with high reflectivity (Z) combined with a low differential reflectivity (Zpr) almost
certainly contains tumbling hail, which is rather big in size (causing the high Z) and spherical (causing the
low Zpg). Bringi et al. (1984), Nanni et al. (2000) and Heinselman and Ryzhkov (2006), among others,
used polarimetric measurements to detect hail.

But also for other hydrometeors and non-meteorological scatterers, a set of rules can be implemented
to give a prediction of the type of echo, with the highest match of the different types. This is mostly
done by assigning different membership functions for each classification of the algorithm using a fuzzy
logic approach. The first use of fuzzy logic in these algorithms was proposed and implemented by Straka
and Zrnic (1993) and Straka (1996). After that, new and more sophisticated algorithms have been
proposed by e.g. Straka et al. (2000), Liu and Chandrasekar (2000), Zrnic et al. (2001), Alberoni et al.
(2002), Schuur et al. (2003), Keenan (2003), Baldini et al. (2004), Lim et al. (2005), Galletti et al. (2005),
Marzano et al. (2006 & 2008), Park et al. (2009), Snyder et al. (2010), amongst others.

Combinations

Several researchers have pointed out that the combination of several methods improves the accuracy of
the clutter removal (e.g. Dixon et al., 2006). A widely used combination is the combination of statistical
(such as spectral filtering) and polarimetric (dual-pol measurements) properties of the backscatterers to
discriminate between weather and nonweather echoes (e.g Moisseev et al., 2000 and 2002, Seminario
et al., 2001, Unal and Moisseev, 2004, Yanovsky et al., 2005, Moisseev and Chandrasekar, 2007 and
Bachmann and Zrnic, 2007).
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Chapter IV. Influence of the radar scanning strategy on the radar
estimates

The radar parameters, such as beam width and pulse length, together with the radar scanning strategy
determine the spatial and temporal resolution, as well as the accuracy that can be obtained for the
radar based rainfall estimates.

The radar scanning strategy mostly consists of a cycle that takes about 5-10 minutes to complete, so
that a new scan is available every 5-10 minutes. Within this timeframe, the radar scans the 360*
surroundings, mostly at different elevation levels, but there are some radar types that only scan at one
given elevation angle. See Figure 9 for a possible scanning strategy with multiple elevation angles
(adapted from the EG-CLIMET MediaWiki website). From these scans, a complete picture of the
surrounding volume, or, as is mostly done, a CAPPI can be made. A CAPPI or Constant Altitude Plan
Position Indicator is a horizontal cross section of the scanned volume at a given height, mostly set at
about 1.5km. The composition of a CAPPI from scans with different elevation angles can be seen from
Figure 9 b, where the blue line is the CAPPI for the height marked with the red line. It is clear from this
figure that the CAPPI is actually a pseudo-CAPPI, because it has several regions where the radar does not
measure at the given height, but the closest observation or a weighted average of the closest
observations is used.

Elevation

Figure 9: a) Radar scanning strategy: example of scans at different elevation levels (adapted from EG-CLIMET MediaWiki)
b) Composing a CAPPI from the scans at different elevation levels, the Pseudo-CAPPI is marked in blue
and uses the closest scan available for a given height (marked with the red line)

An illustration of the radar scanning strategy with real radar data is shown in Figure 10. In the top right
corner, the different elevation scans (PPls) are shown in one plot. The pseudo-CAPPI is shown in the top
left corner and in the bottom, a cross section (marked by the white line in the pseudo-CAPPI and the
black window in the PPI's) through 2 convective lines is shown. This cross section is a combined and
smoothed image of the different PPls (boundary’s marked with the white lines). This plot is visualized
with software provided by CRAHI (Center of Applied Research on Hydrometeorology, Polytechnical
University of Catalunya).
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Figure 10: A figure illustrating the scanning strategy: (top right corner) the different elevation scans - PPI’s, (top left corner)
the pseudo-CAPPI and (bottom) a cross section through 2 convective lines (the cross section is marked by the white line in
the pseudo-CAPPI and the black window in the PPIs). (Visualized with software provided by CRAHI - Center of Applied
Research on Hydrometeorology - Polytechnical University of Catalunya)

Some weather radar operators use the same scanning strategy all the time, whereas others have a more
adjustable strategy (e.g. Manfredi and Kurose, 2007), a set of different scanning strategies (e.g. Klazura
and Imy, 1993), or even a limited sector scanning (e.g. Donovan and MclLaughlin, 2005). The choice of
which strategy to be used then depends on, among other possibly important factors, the presence of
rainfall, the type of rainfall event (convective or stratiform nature, e.g. Brown et al., 2000).

An overview of the scanning strategies used within Europe is documented in Joss (1995). Meischner et
al. (1997) documented in addition to the overview the principal characteristics of the radar networks in
Europe. These characteristics consist of the pulse repetition frequency (PRF), the rotation speed of the
antenna, number of elevation angles and the resulting repetition time for the complete volume scan or
the duty cycle of the radar. The chosen characteristics reflect the compromise between update speed
and the accuracy of the radar data and rainfall estimates.
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The spatial resolution of the radar measurements is a function of the used pulse length, the beam width
and the scanning strategy. A shorter pulse length allows for a finer resolution, but since the sensitivity is
a function of the energy in a pulse, a very low value for the pulse length is not recommended. A smaller
beam width also allows for a finer resolution, but this parameter depends on the radar’s antenna and is
thus difficult to adapt while keeping the other scanning products the same. As for the scanning strategy,
more scans at different elevation levels produce a much more detailed three dimensional image of the
rainfall fields. This however reduces the temporal resolution.

The temporal resolution of the radar measurements is a function of the rotation speed of the radar and
the scanning strategy. When setting the rotation speed of the radar antenna, one should keep in mind
that a lower rotation speed gives more accurate results, but that a higher rotation speed gives the radar
a better ability to capture fast moving or fast changing convective storms. The heavy, but only short
lasting summer storms which produce high peak rainfall intensities and (local) sewer flooding are
generally of this convective type.

The influence of the scanning strategy is less cumbersome, the higher the number of different elevation
levels in one scan, the longer this will take and the lower the temporal resolution will be. The spatial
resolution will however be higher. Keeping the same amount of elevation scans while reducing the time
step to a minimum can be achieved by using a higher rotation speed for the higher elevation angles.
However, one has to keep in mind that the higher elevation scans are used to measure the radial
velocities to derive the wind speed and velocity fields. These fields are frequently used in numerical
weather prediction models.

In order to obtain fine scale rainfall estimates, the radar measurements should have a fine resolution.
The spatial or temporal resolution is, as explained in Chapter I, not determined by the wavelength of the
radar. However, due to their higher installation and maintenance costs, S- and C-band radars are used
for long range coverage and not for fine scale rainfall estimation near the radar, for which the cheaper
X-band radars are more used. It is however possible to obtain these high resolution measurements with
S- and C-band radars if an especially dedicated scan would be incorporated in the scanning strategy
(possibly with different rotation speed and pulse length).

Another possibility involves slightly changing the C-band radar properties, hardware, software and
operational settings to transform the resolution to a so called ‘super resolution’ C-band radar with fine-
scale rainfall estimates. In order to obtain these super resolution measurements, range and angular
oversampling techniques, which are currently used in the NEXRAD” and CASA network, can be used (e.g.
Curtis and Torres, 2011, Hefner and Chandrasekar, 2006).

The principle of these oversampling techniques is to change the radar receiver settings to have more
(and shorter) receiving intervals and thus obtaining more data samples. As these oversampled signals
are strongly correlated, the number of (semi-) independent samples can be increased in a number of
ways, for example by applying statistical decorrelation methods or by analyzing the structure of the
overlapping radar beam volumes. This latter can be done by applying deconvolutional processing

? WSR-88D (Weather Surveillance Radar 1988 Doppler Radars), weather radars of the U.S. NEXRAD network.
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algorithms to reconstruct the high-resolution (or sub-volume) radar reflectivity field (e.g. Li et al, 2011)
or by investigating the cross-correlation functions of the oversampled radar data (e.g. Zhang et al., 2005
or Yu et al., 2006).

For the statistical decorrelation methods, the whitening transformation generates high resolution un-
correlated samples from the oversampled data (e.g. Torres and Zrnic, 2003, Curtis and Torres, 2011).
During the whitening, the signal to noise ratio (SNR) is reduced (the noise is enhanced). Therefore, a
pseudowhitening method (Torres et al., 2004) has been proposed to keep the SNR as high as possible. A
combination of both methods has been used in operational context (using the conventional whitening at
high SNR, switching to pseudowhitening as the SNR decreases).

Yet another possibility to obtain fine scale rainfall estimates is to downscale the radar measurements at
coarser scales, but this will be discussed in Chapter VI.
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Chapter V. Estimation of rainfall rates from radar measurements

In this chapter, several methods for the estimation of rainfall rates from radar reflectivity measurements
will be elaborated on and compared. These different methods include methods for single polarization as
well as for dual polarization radars. For these dual-polarization radars, there is also the possibility to use
empirical relations to estimate rainfall rates. The polarimetric variables however also allow a more
detailed estimation of the DSD parameters, which can then be used to estimate the rainfall rates.

However, when estimating rainfall rates based on radar measurements, the end users of these rainfall
fields have to take into account the possible errors associated with the radar measurements and the
conversion to rainfall fields, as there are several assumptions in this conversion process that may at
some moments not be completely accurate. The different possible errors that may thus be present in
the radar based rainfall fields are discussed further in this chapter.

Suggestion of figure: Overeem

i. Rainfall estimation from single polarization radar data
Radar rainfall estimation for single polarization weather radars is based on an empirical relation
between the measured radar reflectivity Z (dBZ) and the rainfall rate R (mm/h). There is scientific
consensus (e.g. Marchall and Palmer 1948, Battan 1973, among others) on the validity of this relation
and that the best function to describe the dependence between R and Z is a power law relation, such as
equation V-1.

Z =a.RP V-1

The proof of existence of this power law relationship is elaborated on by Uijlenhoet (2001), in which he
shows that Z and R are related to and through the Drop Size Distribution DSD by equation V-2 and V-3
respectively. Steiner et al. (2004) go deeper into the microphysical interpretation of the Z-R relations.

Z~ [n(D).D®.dD V-2
R~ [n(D).D3.v(D).dD V-3
R~ [n(D).D37.dD V-4

Where n(D) is the drop size distribution, D is the equivalent
spherical diameter and v(D) is the hydrometeor fall speed.

The relation between R and D is mostly simplified to equation V-4, which allows estimating the form of
the Z-R relations. The most famous and probably still most used Z-R relationship is the so called
‘Marshall Palmer relation’ (V-5) proposed by Marshall et al. (1955), based on work by Marshall and
Palmer (1948). Numerous other Z-R relations have been determined for other regions, other types of
events (hurricanes, monsoons, etc) and types of precipitation (convective, stratiform or transition
systems, orographic rain, etc), adapting the parameters A and B to get the best fit between the rainfall
rate and the radar reflectivity. A summary of the different proposed Z-R relations can be found in Battan
(1973) and more recently in Raghavan (2003), among others.
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According to Uijlenhoet (2001), the mean Z-R relationship for the 69 different relationships mentioned
in Battan (1973) is given by equation V-6, which is quite similar to the Marshall-Palmer relation for
rainfall rates in the region of 1 — 50mm/h. For higher rainfall rates, the MP relation gives lower rainfall
rates than the mean Z-R relation for the same amount of reflectivity.

Z = 200.RY® (Marshall-Palmer) V-5
Z = 238.R'5 (Mean Z-R relation) V-6

ii. Rainfall estimation from dual polarization radar data
With dual polarization radars, rainfall estimates can be based not only on the reflectivity Z, but also on
the differential reflectivity Zpr, the differential phase PHIpp or the specific differential phase Kpp, each
with their own specific advantages and disadvantages. The rainfall estimations can however also be
based indirectly on the DSD, trough equations V-2 and V-4, where the polarimetric variables are used to
characterize the DSD. This methodology will be described further on.

The new rainfall estimators based on the polarimetric variables are also power law relations in the
form of equation V-1, where Z is replaced by Zpg or Kpp and the parameters A and B are fitted through
regression analysis. Again different Zpr-R and Kpp-R relations exist, adapted to the region, type of event
or type of precipitation. It is clear from the literature (e.g. Ryzhkov and Zrnic (1996), Bringi and
Chandrasekar (2001), Brandes et al. (2002), Matrosov et al. (2005), Ryzhkov et al. (2005b), Giagrande
and Ryzhkov (2008), Vulpiani and Marzano (2008), among others) that the polarimetric variables have
the ability to improve the accuracy of the rainfall estimates. The different rainfall estimators will be
described in the following parts.

Rainfall estimation based on Zp; or R(ZDR) mainly uses equation V-7 to produce rainfall estimates. One
of the first applications of Zpg were proposed by Seliga and Bringi (1976) and Seliga et al. (1981), but also
others (e.g. Scarchilli et al. 1993) proposed other estimators based on Zpg.

RZDR = a. ZDRb V-7

R(ZDR) is not so widely used as a standalone rainfall estimator, mostly due to issues involving the
stability of Zpg. The stability should be within £ 0.2dB to ensure reasonably good rainfall estimates, but
this is operationally very challenging. Zpr is however mostly used (as will be discussed further on) in
combination with other parameters, such as Z, and Kpp.

Rainfall estimation based on Kpp or R(KDP) mainly uses equation V-8 to produce rainfall estimates.
R(KDP) was proposed by Sachidananda and Zrnic (1987). It is more widely used than R(ZDR), (e.g.
Scarchilli et al. (1993), Ryzhkov and Zrnic (1996), Brandes et al. (2001 and 2002), Matrosov et al. (2002
and 2005), Friedrich et al. (2007), among others) since it has the advantage that Kpp is unaffected by
attenuation, partial beam blockage and even radar calibration, as explained in O - iii and the relation is
close to linear (exponent b is close to 1).

RKDP = a. KDPb V-8
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The rainfall estimates based on Kpp have several advantages, the influence of the Drop Size Distribution
considered to be lower than on the rainfall estimates from Z (Sachidananda and Zrnic (1987)) and the
estimates are less affected by the presence of dry tumbling hail, according to Balakrishnan and Zrnic
(1990) and Brandes et al. (2001). Even more, the relation between the rainfall and Kpp is very strong for
high rainfall rates, where most of the different Z-R relations tend to deviate a lot more from each other.
For the lower rainfall intensities, Kpp has to be measured with high accuracy; otherwise it will have to be
integrated over several kilometers to obtain reasonable estimates. This makes Kpp a good predictor for
the high rainfall rates.

Hagen and Meischner (2000) mention that both R(KDP) and R(ZDR) give quite good results for medium
to high rainfall intensities. For lower rainfall intensities, accuracy can be improved by averaging over
space and time, assuming that lower rainfall intensities are more uniform over space and time.

Rainfall estimation based on a combination of the radar variables, R(Multi), performs better than the
single variable estimations, according to the literature, (e.g. Seliga and Bringi (1976), Ulbrich and Atlas
(1984), Jameson (1991), Scarchilli et al. (1993), Ryzhkov and Zrnic (1995a), Brandes et al. (2002),
Matrosov et al. (2002 and 2005), among others).

Scarchilli et al. (1993) used a twofold rainfall estimation method, a first estimator using the combination
of Z and Zpr and a second, separate estimator based on Kpp. Jameson (1991) and Ryzhkov and Zrnic
(1995a) used the combination of Zpz and Kpp for rainfall estimation. Brandes et al. (2002) used the
combination of Zpr and Zy. Matrosov et al. (2002 and 2005) used the combination of Z, Zpr and Kpp.

Rainfall estimation can also indirectly be based on the drop size distribution (DSD), where the DSD can
be characterized by several forms (e.g. a 2 parameters exponential distribution, e.g. Sachidananda and
Zrnic (1987), Smith (2003), Smith and Kliche (2005); a gamma distribution, e.g. Ulbrich (1983) and Brawn
and Upton (2008); a normalized gamma distribution, e.g. Willis (1984) and lllingworth and Blackman
(2002); etcetera). The parameters of the DSD distribution are estimated based on the dual polarization
measurements. Recently, a lot of researchers (e.g. Zhang et al. (2001), Brandes et al. (2003),
Vivekanandan et al. (2004), among others) have investigated the rainfall estimation based on the DSD
approach.

iii. Errors in the radar based rainfall estimation assumptions
Radar rainfall estimation is based on several assumptions, which are not always true and this could lead
to serious offsets when comparing the radar estimates with rainfall observations from rain gauges or
disdrometers.

One of these assumptions is that the scattering of the radar beam on the hydrometeors and other
backscattering objects in the radar scanning volume happens only through Rayleigh scattering. The
Rayleigh scattering principle is however only applicable when the size of the scatterers is much lower
than the wavelength of the radar. For the bigger scatterers which are possibly present in the sampling
volume, the scattering principles follow the Mie theorem, which causes quite different scattering
parameters, reflectivity values and rainfall estimates.
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The Z-R relations rely on the assumptions that the drop size distribution is homogenous which was
experimentally checked by Marshal-Palmer (1947). However Lovejoy and Schertzer (1990) reproduced
their experiment and showed that the fractal dimension of the drop distribution was approx. 1.8 and not
2. This highlighting of the heterogeneity of the distribution of the drops was later refined by a
multifractal analysis (Lilley et al., 2006) of the HYDROP experiment (reconstruction of the size and
position of all the drops contained in a 1m® volume with the help of stereographic images) or the one
(Tchinguirinskaia et al., 2003) of optical spectrometers time series (Salles et al., 1996). This multifractal
heterogeneity can lead to significant coherent backscattering (Speckle effect, Lovejoy et al., 1996;
Schertzer et al., 2011), and hence to statistical bias. These investigations show the need to develop in
parallel a theoretical framework for extreme small scale rainfall variability and measurement tools which
is rarely done.

It is normally also assumed that the radar measurements aloft are representative measurements for the
rainfall estimates at ground level. It is however possible that several microphysical processes occur
during the falling time of the droplets (e.g. evaporation, condensation or coalescence, sublimation,
riming, aggregation and breakup), but also advection by wind fields could change the location of
observed rainfall aloft to other regions at ground level (e.g. Zawadzki 1984; Kitchen and Jackson 1993;
Joss and Lee 1995).

Another assumption is the use of only one, mostly fixed rainfall rate estimator (Z-R relation). Research
has shown that different Z-R relations can be found for different types of rain events (stratiform
precipitation, convective precipitation, line squalls, thunderstorms, tropical storms, hurricanes ...),
climatic regions (the tropics, regions with higher latitudes, even for specific locations ...), etcetera. A
summary of these different Z-R relations can be found in Battan (1973) and more recently Raghavan
(2003). It may thus be better to use different rainfall estimators in different cases. These differences can
be caused by differences in drop size distributions associated with these different circumstances.

iv. Errors in the radar rainfall measurements
Even if all the assumptions for the rainfall estimation based on radar measurements are fulfilled (for that
moment), comparison of the radar estimates with rain gauge measurements will still not be perfect, due
to several factors, some due to the highly non-linear physics of the radar measurements or the site-
specific radar hardware setup, other from due to possible errors in the measurements of both the radar
and the rain gauge.

All error sources affecting the precision of the radar reflectivity measurements (e.g. partial beam
blockage, ground clutter, attenuation effects, among others) also affect the derived rainfall estimates.
These error sources have been discussed in the previous chapters together with their correction
methods. The correction mechanisms are however not perfect and the radar based rainfall estimates
can thus contain some degree of contamination from radar errors.

The specifics of the radar hardware, its setup and settings also influence the specifics and precision of
the radar measurements. For example, wet radome attenuation depends on the presence of a radome
and the specific type and material of the radome. The other characteristics of the radar (such as the
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detection range, the accuracy, the temporal and spatial resolution and others) are dominated by the
radar hardware, its setup and settings (e.g. the influence of the scanning strategy on the spatial and
temporal resolution was discussed in Chapter IV).

Some other error sources remain (which apparently appear random) , which need further investigation.
More understanding on the interaction of different radar waves with different hydrometeor types is still
needed and research is currently being done to expand our knowledge in these fields. The field of cloud
dynamics is very interesting and promising for radar meteorologists and urban hydrologists, especially
the microphysical processes occurring in the cloud base below the radar beam.
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Chapter VI. Combining radar rainfall estimates with other rainfall
measurements

Merging radar data with other sources of rainfall information, such as rain gauge data or other rainfall
measurements, should always be the last step in the processing chain to achieve fine scale rainfall
estimates. The radar calibration and correction mechanisms discussed in the previous chapters (e.g.
clutter removal, attenuation and volume correction) should be applied to the raw radar data first. After
these, the ground truthing of the radar data can be done based on rain gauge or disdrometer data.
Several ground truthing methods exist. Most of these methods use rain gauge data, because most areas
have an extended operational network of rain gauges of varying density (operated by (waste) water
management agencies, meteorological offices or others), whereas there is hardly anywhere a network
of disdrometers available.

The question could also be raised whether sewer observations (water height, speed etcetera) could be
used as an extra assessment of the quality of the radar rainfall measurements. The spatial radar based
rainfall estimates could be used as an input for a highly detailed distributed sewer model and the
outcomes of the model could then be compared to the available sewer measurements to assess the
quality of the rainfall input. This approach however also incorporates the uncertainties and errors of the
sewer run off calculations into the comparison and assessment of the different types of rainfall input.
The latter can be important as well. Willems (2008) for instance quantified that about 30% of the total
uncertainty in sewer flow models is due to the rainfall input uncertainty; the remaining 70% hence is the
result of other types of sewer model related uncertainties (model structure uncertainty and parameter
calibration errors).

Even though the comparison of radar vs. rain gauge measurements is the most popular way to assess
the quality of the radar measurements, there are some remarks, which will be discussed hereafter.
These have to be kept in mind before making these seemingly straightforward comparisons. For
example, the measurement techniques are quite different, the assumptions for the radar based rainfall
estimation (conversion from reflectivity to rainfall rate) might not always be fulfilled and there could be
errors in the measurements of both the radar and the gauge. These possible error sources will be
explained and the different comparison, adjustment and integration principles and methods will be
discussed thereafter.

Another, important factor to be taken into account is that radar rainfall estimates and rain gauge
observations represent rainfall information at different spatial and temporal scales. Rain gauge data for
instance represent point rainfall information, and radar data represent volume averaged information.
These differences in representation have to be taken into account, next to the differences in accuracy.

Thus, as Brandes et al. (2001), among others, concluded: “Even with a well calibrated radar and an
unbiased rainfall rate estimator, only approximate agreement between radar-derived rainfall estimates
and rain gauge observations is to be expected. Nevertheless, gauge observations are still a widely used
indicator of radar performance.”
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In order to obtain the best possible fine scale rainfall estimates for urban drainage impact investigations,
all different rainfall sources (all available weather radar products, be it S-band, C-band or X-band radar
data, but also the different types of rain gauges, disdrometers and even microwave links) might have to
be integrated. In this integration process, the temporal and spatial resolutions of the different rainfall
sources to be merged are preferably similar. Rainfall estimates with coarse resolution (in space and/or
time) can be adapted to finer scales by means of interpolation or downscaling methods.

Also when the number of measurements is not sufficient or the quality of the overall estimate can be
improved, hydrologists fill in the gaps with data from other suitable surrogates with possibly different
temporal or spatial resolution by means of interpolation or up- or downscaling procedures in order to
end up with the best possible measurements or estimations.

However, before the integration of different sources of rainfall information can be successfully achieved,
it is of key importance that the quality and availability of each of these sources is assessed. It is
important to know the possible errors in the data, as well as the uncertainty in the measurements. Each
data source should be subjected to a thorough quality check, flagging the potential erroneous data or
data associated with high uncertainties. The OPERA® project provides an overview of the operational
network of weather radars, including a quality assessment of the weather radar data. In addition to
these quality assessments, some researchers mention the need for minimal rainfall detection maps,
maps that show the lowest possible detectable rainfall rate with the used measuring device.

i. Errors in the point rainfall measurements

The following sections describe the point rainfall measurements which are mostly taken as reference
values for the radar based rainfall estimates and their possible errors. Different types of rain gauges
exist (standard non recording, tipping bucket, weighting, optical and acoustical among others) but the
tipping bucket rain gauges are the most widely used in radar rainfall correction and urban drainage
applications. Newer technologies for point rainfall are however emerging, using the principles of
acoustic and optical rain gauges, giving more information on the size and velocity of the raindrops. The
possibilities and possible pitfalls of these disdrometers will be discussed.

Rain gauge measurements

Rain gauge observations are most commonly viewed as ground truth for radar measurements. They are
however not perfect and have some possible error sources. It is known (e.g. Sevruk, 1996) that rain
gauges have difficulties measuring rain in windy conditions as they are mostly not equipped with
suitable and necessary windscreens (this causes underestimation, even up to 20%) and can have serious
underestimations for high intensity rainfall events. (Some rain gauges measure at ground level, which
reduces the vulnerability to turbulence. In this case however, the surrounding surface may cause
splashing of the raindrops into the gauges and special care has to be given to the selection of the
surrounding surface.) A dynamic re-calibration of the rain gauges (e.g. Humphrey et al., 1997, Luyckx
and Berlamont, 2001, Kvicera and Grabner, 2006) would thus be preferable above the static calibration

* OPERA: Operational Programme for the Exchange of Weather Radar Information: http://www.knmi.nl/opera/
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values mostly given by the manufacturer. Several studies (e.g. Habib et al., 2008) show that these effects
can seriously influence the results of runoff simulations.

Some rain gauges (especially Tipping Bucket Rain Gauges: TBR’s) are susceptible to blockage of the
rainfall measurement device by for example leaves from trees, bird droppings or even bird nests.
Operational malfunctions could also include failure of the logger or the data transmitting device. Regular
maintenance and check-ups of the measurement and logging mechanisms of the gauges is advised as
well as a thorough quality control of the rainfall data they provide. Willems (2001a) provided for typical
TBR measurements in Belgium an assessment of its uncertainty.

A recent literature review document (Wagner, 2009) on the correction of precipitation measurements
documents the different possible error sources affecting the TBR measurements and the possible
correction methods.

Some additional references with respect to rain gauges:
Strangeways, |., 2007: Precipitation: Theory, Measurement and Distribution. Cambridge University Press,
Cambridge.

WMO has done research on this topic, and more publications (also field experiments) are related to this
one.

Wauben, W., 2006: KNMI Contribution to the WMO Laboratory Intercomparison of Rainfall Intensity
Gauges. Technical report TR-287, KNMI, De Bilt, available via www.knmi.nl/“wauben.

Disdrometer measurements

Historically, the first widely used disdrometers were acoustic impact disdrometers, measuring the noise
generated by the impact of a falling drop and relating this to the rainfall rate (Joss and Waldvogel, 1967).
Now the most commonly used operationally are optical disdrometers. They are made of one (or several)
transmitter(s) and receiver(s) with the sampling volume(s) in between them. The transmitter generates
one or several laser sheet(s) and the receiver measures either the occluded light (Loffler-Mang and Joss,
2000 for an initial version; Battaglia et al., 2010; Frasson et al. 2011) or the scattered light (Ellis et al.,
2006) from a drop falling through a sampling area of roughly few tens of cm”. The received signal is then
processed to estimate the size (equivolumic diameter) and velocity of the hydrometeor.

More recently, 2D Video disdrometers have also been developed (Kruger and Krajewski, 2002) but they
are not yet used operationally. Some experimental set-ups have also been deployed to reconstruct the
3D raindrop field of snapshots of a reference volume (1m?) (HYDROP Experiment, Desaulnier-Soucy et
al., 2001).

The accuracy of disdrometers is affected by wind, similar as rain gauges. The other main limitations are
that the estimation of size and velocity of drop relies on strong assumptions of the shape of drops which
are not necessarily met in real case (Battaglia et al., 2010), a significant sampling error for small time
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steps because of the small sampling area (up to 15% error on the rain rate for 1 min time steps and
decreasing for larger time step, see Jaffrain and Berne 2011), and non homegenous laser beam pattern
for disdrometers computing the occluded light (Frasson et al., 2011). Several studies compare various
disdrometers but also compare these disdrometers with more conventional devices such as rain gauges
(Brawn and Upton, 2008; Krajewski et al, 2006; Miriovsky et al., 2004; Thurai et al. 2011, Tokay et al.,
2001, Jaffrain et al. 2001). They emphasized the difficulty of obtaining accurate point measurement and
concluded that, despite of the above mentioned limitations, disdrometers are as reliable as the standard
devices for point rainfall measurements.

Dense networks of disdrometers have recently been deployed which enable the possibility to show the
importance of taking the small scale DSD variability in the Z-R or R-Kdp relation into account and more
generally of improving knowledge in this field (Jaffrain and Berne, 2012; Tapiador et al., 2010).

ii. Resolution differences in the rainfall measurements
Other differences between the radar and gauge measurements can be caused by the differences in the
measurement of the rainfall, which makes straightforward comparison rather difficult.

One of the differences is the volume of the precipitation measurement. Rain gauges or disdrometers
typically deliver point measurements (small area, around 0.1 - 0.2m? for tipping bucket rain gauges). For
radar measurements, the sampling volume increases with the distance from the radar, but is at any
distance many times larger than the sampling area of the ground measurements. This difference could
have an impact on the comparison. It has been proposed by some (e.g. Sinclair and Pegram, 2005) to
spatially upscale the point rainfall measurements at ground-level to a radar type of rainfall information
before comparing the two sources of rainfall information and adjusting the radar estimates. In the
horizontal dimension, different spatial interpolation, aggregation or upscaling methods exist. These will
be discussed hereunder.

More difficult is to account for the difference in the vertical dimension: the height of the precipitation
measurements, hence to account for the fact that rain gauges always measure rainfall at the surface,
where radar measurements cover a given vertical range that can be up to one kilometer or more,
depending on the distance from the radar. However, a lot of microphysical processes might affect the
vertical variability in rainfall intensities, hence the difference between the radar and the gauge
measurements. VPR correction methods (as discussed in Chapter Ill) can help to correct for the
difference.

One of the other differences is the sampling time of the precipitation measurements. Most rainfall rate
estimators are continuous measurements, whereas the radar measurements are only available on
discrete time steps, mostly every 5 minutes, as explained in Chapter IV on the radar scanning strategy.
This could also have an impact on the comparison between the two (e.g. Fabry et al. 1994). There is
however also a time lag between the sampling of rainfall aloft by the radar and the sampling close to the
ground by the gauges, depending on the scanning elevation of the radar, this could be one to several
minutes. This time shift has to be taken in to account.
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One of the preferences is that the temporal and spatial resolutions of the different rainfall sources to be
merged are similar. Rainfall estimates with coarse resolution (in space and/or time) can be adapted to
finer scales by means of interpolation, or downscaling methods. The term interpolation typically refers
to methods that spatially or temporally interpolate data from a ground based network of point
measurements (e.g. rain gauges or disdrometers) to obtain rainfall estimates at finer resolution than the
available data. The term downscaling is used when the finer scale rainfall estimates are obtained from
areal rainfall data sources such as radar data, microwave links or estimates from atmospheric models
(such as global circulation models, GCMs, regional circulation models, RCMs, or even down to limited
area meteorological models, LAMs). It is however possible that interpolation and downscaling
approaches are integrated in one method, for example to integrate rainfall information from remote
sensing and rain gauges (e.g. Fiorucci et al., 2001 and Todini, 2001). The two different approaches,
interpolation and downscaling methods will be discussed hereafter.

Interpolation and upscaling methods

The interpolation procedures using only rain gauge data, such as the Thiessen method, the isohyetal
method, ordinary kriging and others will be discussed in section iii of this chapter. With these
interpolation methods, rainfall estimates can be obtained with higher resolution. The interpolated
values can afterwards be averaged or aggregated in order to upscale the rain gauge observations from
the point scale to the grid scale before they are merged with radar data. For example, Sinclair and
Pegram (2005) use the so called ‘Conditional merging’ technique (Ehret, 2002, Pegram and Sinclair,
2004). This technique uses the kriging method to upscale the rain gauge based rainfall estimation and
incorporates the spatial variability observed by the radar reflectivity field into the upscaled kriging
estimates. A scheme of this technique is shown in Figure 11 (adapted from Pegram and Sinclair, 2004).
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Figure 11: Conditional merging scheme: the TBR rainfall information (a) is spatially interpolated by the kriging method (b),
the radar based rainfall information is shown in (c). The two are compared in (d) and the differences of the radar estimates
with the kriging results are shown in (f). These differences are applied to the kriging results to incorporate the spatial rainfall
variability as observed by the radar (adapted from Pegram and Sinclair, 2004)

Willems (2001a) quantified the uncertainty in areal rainfall estimates based on spatial interpolation of
rain gauge measurements. This was done based on a dense network of rain gauges and areas up to
about 100km2. He concluded that areal rainfall estimation errors are described by a lognormal
probability distribution function (PDF). When the areal rainfall is estimated from one rain gauge at a
given distance, the mean of this PDF was neither zero for small point rainfall volumes at large distances
(distance between the centre of the area and the point rainfall measuring station) or for large point
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rainfall volumes at small distances, indicating a bias in the mean areal rainfall estimations, an
underestimation for small volumes and an overestimation for large volumes. The correlation of the
uncertainty in time was also investigated and found to be negligible over time scales larger than the
typical duration of one rain storm.

Downscaling methods

For the downscaling methods, generally two different approaches are used, the stochastic (statistical)
and physically based (dynamical) downscaling methods.

The physically based or dynamical downscaling methods use the existing rainfall measuring or

modelling methods but increase their resolution. For radars, this can be done by changing the scanning
strategy, e.g. by increasing the scanning frequency and resolution, see Chapter IV. This is similar to what
is done in atmospheric or climate models. Whereas global atmospheric and climate models, such as the
general circulation models (GCMs) produce results at coarse scales, these can be downscaled in a
physically based way, hence preserving the physical consistency between the coarse and fine scale
values, by increasing the resolution of these models. In order to keep the computational times
limited/practical; the higher resolution models will be limited to smaller areas. That is why these models
are called regional circulation models (RCMs) or limited area meteorological models (LAMs; e.g. Rebora
et al., 2005; Willems et al., 2012). Of course, this requires that the devices or models can capture in a
satisfactory way the fine scale rainfall behavior (e.g. Ferraris et al. 2003b; Maraun et al., 2010).

The use of numerical weather modelling and prediction (NWP) data for downscaling (e.g. Brandt et al.,
2005 and Lo et al., 2008)also falls within the category of dynamical downscaling, as far as it concerns the
data up until real-time. This type of modelling however exceeds the scope of this work, but will be
addressed in a later phase of the RainGain project, when we address the fine-scale rainfall nowcasting /
forecasting.

Within the statistical or stochastic downscaling models, there exists a wide variety of approaches.

They use statistical or stochastic models to derive a number of possible yet different fine scale rainfall
fields (referred to as ensembles). One of the imposed properties on these fine scale rainfall fields from
the downscaling processes is that when the results are accumulated to the larger scale, the pattern is
similar (or identical) to the larger scale data the downscaling process started with. They should thus
meet the large scale constraints, as well as the fine scale statistics of real rainfall fields. These statistics
are for the simpler models the first and second order moment of the rainfall fields including correlation
features. For the more advanced models, additional characteristics are included, such as the fractional
coverage, the scaling of moments, clustering, etc. The relations used to achieve the fine scale estimates
vary between the different methods. In the case of weather radar data, the use of downscaling
techniques could help to get fine scale estimates from coarser resolution S- or C-band weather radars
and to compare or merge these estimates with X-band radar data.

Extensive overviews on statistical and stochastic downscaling methods and applications can be found in
the literature (e.g. Hewitson and Crane, 1996, Zorita and von Storch, 1997, Wilby and Wigley, 1997, Xu,
1999, Hanssen-Bauer et al., 2005 and Maraun et al., 2010, for review papers, and e.g. Prudhomme et al.,
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2002, Fowler et al., 2007 and Christensen et al., 2007, for applications). The methods are also commonly
applied to downscale results from climate models, also for urban drainage applications. For an overview
on this, see the review book by Willems et al. (2012). The most common methods are presented
hereafter.

In the class of statistical or stochastic downscaling methods, distinction is made between methods that
disaggregate the coarse scale rainfall data to the finer spatial scale required for the application (urban
drainage in this case). This can be done for each rainfall measurement value at each time step. Some
(urban drainage) applications do not require the fine-scale rainfall data in the form of historical time
series, but in the form of rainfall statistics. This is for instance the case in design applications.

Disaggregation methods

The first class within the statistical downscaling methods are the stochastic disaggregation methods.
These methods, including temporal and spatial disaggregation methods, but also multifractal analysis
and weather typing, are able to disaggregate coarse rainfall measurements to finer scales.

These stochastic disaggregation methods allow rainfall disaggregation for each time step in an historical
series of rainfall observations. From this time series, rainfall statistics can be obtained after post-
processing and statistical analysis. Methods exist that can obtain fine-scale rainfall statistics from the
coarse-scale statistics, without the need to downscale first every observation in the historical time
series. These statistical downscaling methods will be described in the following section. There are also
methods which are able not only to disaggregate the rainfall observations on a day to day basis, but also
based on the time series. These methods will be included in both sections, but explained hereunder.

Point process theory

Let us first study the temporal disaggregation with the help of point process theory Stochastic point
process theory considers physically-based parameters, constituting the hierarchical structure of the
rainfall process (Wang, 2012). Within this class, the Poisson-cluster models and more precisely, the
Bartlett-Lewis (BL) models (e.g. Rodriguez-lturbe et al., 1987 and Verhoest et al., 1997) or the Neyman-
Scott (NS) models (e.g. Kavvas and Delleur, 1981 and Cowpertwait et al., 1996) are the most widely used
group. A review on the different Poisson cluster models can be found in Onof (2000) or more recently
Kaczmarska (2011), which has a strong focus on BL models. The point rainfall generation structures of
the NS and BL models are represented in Figure 12.

These types of methods use statistical relations and distributions for storm and rainfall characteristics,
for example for the arrival time of rainfall clusters, the duration and intensity of specific rainfall cells,
etc. They are calibrated by matching the statistical moments, empirically obtained from the observed
time series and derived by means of analytical equations from the model parameters. An interesting
discussion on the parameter estimation problem can be found in Onof et al. (2000). Calibration of the
models is a current bottleneck and should be optimized (e.g. Vanhaute et al., 2012).

The methods were first developed as rainfall series generators for specific sites, but can also be used for
downscaling purposes. The downscaling procedure combines the rainfall model (based on the BL or NS
process) with adjustment techniques, which modify the generated fine scale time series to match the
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higher level time series while leaving the simulated stochastic fine scale rainfall features unaffected. The
method simulates a set of possible rainfall sequences and the one in closest agreement with the higher
order time series is retained as the downscaled time series. Several different adjustment techniques
exist, such as the proportional adjustment, the linear adjustment technique, etc. The reader is referred
to Koutsoyiannis and Onof (2001) for more information on the different adjustment techniques.

The rainfall disaggregation has most commonly been applied to obtain hourly rainfall values from daily
values (e.g. Onof and Wheater, 1993 and 1994, Bo et al., 1994, Glasbey et al., 1995, Gyasi-Agyei, 1999
and 2005, Koutsoyiannis and Onof, 2001 and Onof and Arnbjerg-Nielsen, 2009), but further
disaggregation to the minute-scale is possible. Experience however learns that the BL and NS models are
not so accurate for the sub-hourly scale (Paschalis, 2012). For that reason, the further downscaling from
hourly to sub-hourly rainfall is recommended to be performed by other downscaling methods.
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Figure 12: Schematisation of the Neyman-Scott and Bartlett-Lewis model (adapted from Paschalis, 2012)

The stochastic point rainfall models (such as the Bartlett-Lewis or Neyman-Scott) have also been
extended to spatial versions of these models, e.g. Cowpertwait, 1995, Cowpertwait et al., 2002,
Koutsoyiannis, 2003, Burton et al., 2008, so that both the BL and NS models are able to generate
spatially and temporally consistent rainfall sequences. These models, in their simplest form, assume the
uniform movement of one or more rainfall cells over the area of interest. The generation of cells, is
controlled by a 2D Poisson-process, opposed to the 1D modelling in the point rainfall generators. The
size, intensity and movement speed of the cells is also statistically simulated. More information on these
methods can be found in Onof (2000), but also other methods to generate spatial rainfall structures
exist. For example, Willems (2001b) designed a spatial rainfall generator (analogous to the spatial BL and
NS models) in which the rainfall cells are assumed to have Gaussian shapes, see Figure 13. The
parameter calibration was, however, in Willems (2001b) not done based on the analytically derived
moments, but after statistically analyzing a large number of radar-observed rain storms. With these
spatial models, rainfall disaggregation is possible both in time and space (e.g. Fowler et al., 2005,
Burton, 2010, etc.).
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Figure 13: Rainfall distributed over Belgium and the Gaussian-shaped rainfall cells (after Willems, 2001b).

The point process theory based rainfall generators are also called stochastic rainfall generators.
Stochastic rainfall generation, or as part of more general weather generation, can also be done by other
methods, such as Markov chain approaches, which are discussed in the next section.

Cascade and multifractal methods

Multifractals are a tool for the analysis and simulation of geophysical fields such as rainfall exhibiting
extreme variability over wide range of spatio-temporal scales. They were initially introduced in the
eighties following discussions on the scale-invariance properties of geophysical field (see Schertzer and
Lovejoy, 2011 a recent review with an historical background). They rely on the assumption that rainfall is
generated through a multiplicative cascade process that distributes intensity from large scale structures
to small scale ones. In a discrete case a step of a cascade process consists in dividing a structure (a time
step in for time series or a pixel for maps) into sub-structures and assigning to each sub-structure an
intensity equal to the intensity of the parent structure multiplied by a random increment (see Figure 14a
for an illustration).. The process is scale invariant in the sense that the way the structures are divided
and the probability distribution of the random multiplicative increments are the same at each step of
the cascade process. This concept is more than an ad hoc statistical tool fitted to rainfall fields since it is
physically based in the sense that it is in agreement with the scale invariance properties of the Navier-
Stokes equations governing atmospheric behaviour, which are assumed to be transmitted to the
unknown equations for rainfall processes (Hubert, 2001). Various probability distributions have been
suggested (see Schertzer and Lovejoy 1987, or Over and Gupta, 1996 for some famous examples) with
this same underlying concept. Multifractal tools are commonly used our field (Gupta and Waymire,
1993; Harris et al., 1996; Marsan et al., 1996; Olsson and Niemczynowicz, 1996, de Lima and Grassman,
1999; Deidda, 2000 Pathirana and Herath, 2002; Biaou et al., 2003; Pathirana et al., 2003, Ferraris et al.,
2003a and b; Macor et al., 2007; Royer et al., 2008; Nykanen, 2008; De Montera et al., 2009; Gires et al.,
2012a and b, among others].
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Being intrinsically scale invariant these methods are capable of dealing with rainfall data at any
(especially high in which we are interested here) spatial and temporal (minute-scale) resolution (e.g.
Pathirana et al., 2003, Molnar and Burlando, 2005, Onof and Arnbjerg-Nielsen, 2009) and their validity is
not limited to the resolution for which they were fitted.

Stochastic cascade models have been commonly used for downscaling rainfall fields (Biaou et al. 2003,
Deidda, 2000; Ferraris et al., 2002; Olsson et al., 2001; Rebora et al., 2006a; Royer et al., 2008). Indeed
they are very convenient for such a task since their structure is scale invariant. Downscaling is simply
achieved by first estimating the relevant parameters of the underlying cascade process on the available
range of scales (by performing a multifractal analysis on the data), and then stochastically continuing it
to resolution higher than the observations’. Temporal, spatial and spatio-temporal downscaling can be
implemented with the help of similar methodology. See Figure 14b for an illustration in 2D.
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Figure 14: Rainfall downscaling a) lllustration of a cascade process in 1D and 2D (adapted from Gires, 2012),
b) an example of the spatial downscaling based on real data (adapted from Gires et al., 2012b)

Example from RainGain consortium: Multifractal cascade downscaling methods in practice:

Gires et al. (2012b, and 2012c) investigated the effect of the uncertainty due to the unknown small scale
rainfall variability on a semi-distributed urban rainfall-runoff model. Unknown should be understood as
occurring below the observation scale which was of 1 km in space and 5 min in time with the available C-
band radar. In order to quantify the impact of the small scale variability, an ensemble set of realistic fine
scale rainfall fields was generated based on the universal multifractal cascade approach (Schertzer and
Lovejoy, 1987). These ensembles are then used as input for the urban rainfall runoff model and the in-
sewer conduit flows were simulated. The variability among the simulated hydrographs is then estimated
to quantify the uncertainty. This approach is applied on the Morée-Sausset catchment (a 3400 ha urban
area situated in Seine-Saint-Denis, North-East of Paris, France) and the Cranbrook catchment (a 900ha
urban area situated in the east of London, UK).

They implemented both spatial (2D) and spatio-temporal downscaling (3D). A schematization of the two
approaches is shown in Figure 15. For this application only the more pedagogical discrete cascades were
necessary, but it would be possible to implement similar techniques with continuous cascades (see
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Pecknold et al. 1993) for explanations on how to simulate them) which would avoid the rather
unrealistic square structures visible on the downscaled field (Fig. 19). Comparison led to the conclusion
that the 2D approach might overestimate the uncertainty, whereas the 3D approach gives more realistic
results. They concluded that it is strongly recommended to use distributed (radar) rainfall in urban
hydrology. Moreover, they encourage the use of X-band radar, which allows measuring rainfall at a
higher resolution. The extra added value of radar measurements during summer is also endorsed by
their results, especially for intense small scale convective events.
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Figure 15: lllustration of the spatial (left) and spatio-temporal (right) downscaling techniques

Weather typing
Within the weather typing approach, small scale rainfall features are linked to coarser scale weather

patterns. From atmospheric conditions (pressure and temperature distributions, etc.), a specific set of so
called ‘weather types’ (atmospheric circulation patterns with accompanying temperature distributions)
can be categorized. They can be defined for every rain storm or time step, e.g. for every day or every
one or several hours. Based on an historical dataset of events or time period where both coarse and
fine-scale rainfall observations are available, for events or time steps where only the coarse scale rainfall
data is available, the fine-scale rainfall values can be estimated by “copying” the most analogue event or
time step from the historical dataset. The specific weather type of the event or time step, i.e. day, is
used to define the day in that dataset with the most ‘analogue’ (large scale) atmospheric conditions.
Instead of “copying” the fine-scale rainfall, one can also estimate the rainfall based on the downscaling
relation for that analogue day. The measure of how analogue one day is to another can be defined
based on several methods and can involve, besides the weather types also other factors, such as the
season or the specific month, the temperature, the relative humidity, etc.

The weather types can be determined in several ways, which can be divided in two main groups. The
first group, known as the subjective approach, tries to use prior knowledge and defines the weather
types a priori, such as the Lamb weather types (Lamb, 1972) but several authors have adapted this
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method to be less subjective (e.g. the automated Lamb classification, Jenkinson and Collison, 1977). The
second group of methods tries to cluster the days into specific subsets with high similarities; they do not
assume prior weather types. Within this group, k-means clustering is widely used (e.g. Huth, 2001,
Ullmann and Moron, 2008 and Ullmann and Monbaliu, 2009), but also other mechanisms are possible,
such as neural networks, fuzzy logic, etc (see Vrac et al., 2007 or Mauran et al., 2010 for an overview of
the different mechanisms).

Two weather typing methods (the automated Lamb weather typing and k-means clustering) have been
applied for NW-Europe (for specific application of rainfall downscaling in Belgium) by Decloedt (2011),
albeit for another purpose but the weather types are applicable to fine scale rainfall downscaling as
well. A subset of the different weather types, both subjective (weather types West and North-West) and
objective (cluster types Atlantic Ridge and Zonal) can be found in Figure 16, which shows the mean sea
level pressure (SLP) maps for these specific weather or cluster types.

The method has been applied for rainfall downscaling by several authors (e.g. Goodess and Palutikof,
1998, Bellone et al., 2000, Vrac and Naveau, 2007, Willems and Vrac, 2011). Weather types have also
been used for advancing stochastic weather or rainfall generators, by conditioning the parameters of
the generator to weather types (e.g. Wilby et al., 1998 and 2002, Wilks, 1999, Wilks and Wilby, 1999,
Bischoff and Vargas, 2003, Olsson et al., 2009, etc.).
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Figure 16: Mean SLP maps for a subset of different weather types for Belgium:
A: through automated Lamb classification (weather types: West and North-West),
B: through k-means clustering (cluster types: Atlantic Ridge and Zonal) (after Decloedt, 2011)

Empirical transfer functions / Generalized linear models

Empirical transfer functions relate large scale atmospheric information to small scale rainfall
information. Within the class of empirical transfer functions, the generalized linear models (GLMs) are
the most widely used methods. This can be done for each event or time step, or to relate fine scale
rainfall statistics, e.g. probability distribution functions (PDFs), to the values of one or several associated
predictors (also referred to as covariates).

The idea of transfer function models is to find relations between the fine scale rainfall information and
suitable predictors and to estimate the fine scale rainfall information, based on the fitted relations and
the predictors, for events that were not used in the deduction of the predictor relations. The linear
regression model is the most popular one in this class. GLMs are an extension of this simple linear
regression model, as they allow a wider set of fitted transfer functions and are better able to deal with
data that is not normally distributed (Gill, 2000). More particularly, the GLM generalizes linear
regression by allowing an arbitrary monotonic function of the dependent variables Y (called link function
g) to vary linearly with the independent variables X: g(Y) = BX, where B are the regression parameters.
This is different from the simple linear regression approach where the dependent variables themselves
vary linearly: Y = BX. In this way, they also allow the magnitude of the variance of the dependent
variable to be a function of the dependent variable, which is typically the case in rainfall downscaling
applications.

The applications of GLMs for rainfall downscaling generally consist of a two phase approach (Figure 17),
as is also the case for Markov Chain approaches. The first phase, the ‘Occurrence model’, consists of
modelling the occurrence of dry and wet days. Most often a logistic regression is used for this.
Hereafter, in the second phase, a PDF of the ‘Amounts model’ is used to predict the rainfall amount on
the wet days.
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Figure 17: Schematization of the GLM downscaling method with the two phase approach,
consisting of the occurrence and the amounts models (adapted from Wang, 2012)

The GLM approach (e.g. Chandler and Wheater, 2002, Yang et al., 2005, Segond et al., 2006) has mainly
been used for daily timescales but can be used to go further to the hourly or even minute-scale. The
method was first developed for specific sites, but the spatial component is becoming more and more
incorporated. Yang et al. (2005), for example, developed a method to generate rainfall series at multiple
sites simultaneously. However, the GLM output quality strongly depends on the choice of the
appropriate predictors (Wang, 2012).

Empirical transfer functions / Quantile mapping

One option for the empirical transfer function approach is to relate the fine scale rainfall PDF directly to
the coarse scale rainfall PDF. This can be done by quantile mapping (QM). The method has several
synonyms in the literature: quantile matching, quantile-quantile (QQ) transformations, probability
mapping, cumulative distribution matching, etc. These different names however stand for the same type
of method, namely replacing the rainfall quantiles of the coarse scale PDF to the corresponding
guantiles of the fine scale PDF. The method can also be used for distribution bias correction, e.g.
correction of the downscaled rainfall distribution based on the observed rainfall distribution (e.g.
ThemeRI et al, 2011 and Gudmundsson et al., 2012). This method is an expansion of a simpler approach
where only the distribution moments, e.g. the mean or the mean and the variance, are matched
between the two distributions. With quantile mapping, the entire distribution is matched.

An example of a QQ-plot (quantile quantile plot) of observed (Po) and modeled (Py) precipitation
together with the transformation function to map the quantiles together is shown in Figure 18, as well
as the empirical cumulative distribution function (CDF) of the observed, modeled and transformed
precipitation. Recent hydrological applications (e.g. Dettinger et al., 2004, Wood et al., 2004, Boé et al.,
2007, ThemelRl et al, 2011), mainly focus on statistical downscaling of climate model simulation results,
but the method is well applicable to any coarse scale rainfall information.
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Figure 18: Example of the Quantile mapping method: left: a quantile quantile (QQ-) plot of observed (P,) and modeled (Py,)
precipitation and a transformation function (h) to map the quantiles together, right: the empirical cumulative distribution
function (CDF) of the observed modeled and transformed (h[Py]) precipitation (after Gudmmundsson et al., 2012).

Neural network models

Another group of methods uses neural networks (NN, e.g. Gardner and Dorling, 1998) for the statistical
downscaling of rainfall information. These neural networks, limited here to artificial NN, are black box
models and they are good at linking nonlinear interactions between atmospheric processes at different
scales (e.g. Giorgi and Mearns, 1991, Zorita and von Storch, 1999 and Olsson et al., 2004). A NN consists
of a structure of interlinked nodes (the so called architecture of the network), where the architecture of
the network can vary significantly in complexity. Each node or artificial neuron may have several inputs
and one output. The output variable can be ‘trained’ based on the input variables and the expected
output during the learning or training phase. After that, in the usage phase, the network will be able to
predict autonomously the output variables based on the input and the learning procedures. In this
prediction phase, the neuron looks for situations in the learning database matching or similar to the new
situation and will select the output based on the output of that similar situation. Figure 19 represents
the structure of a single neuron with its different inputs and output.

a) b)
INFUTS TEACH {USE

OUTPUT

TEACHING INPUT Inputs Hidden layer Qutputs

Figure 19: Artificial neural network schematization: a) representation of one single neuron and b) representation of a simple
feed-forward neural network architecture (adapted from Stergiou and Siganos, 1997)

Many different network architectures exist, ranging from simple feed-forward networks, see Figure 19b,
to more complex systems with feedback loops. There is also the possibility to couple two NNs in series,
where the first one determines whether the day is dry or wet and the second one determines the
rainfall intensities during rainy days (e.g. Olsson et al., 2004). This is an analogue approach as applied in
some of the GLM methods described above. For a more thorough discussion on neural networks, the
reader is referred to the literature (books by e.g. Smith, 1993 and Bishop, 1995 or review papers by e.g.
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Maier and Dandy, 2000, among others). Applications of neural networks in hydrology include Hewitson
and Crane (1992), Cavazos (1997), Crane and Hewitson (1998), Wilby et al. (1998), Olsson et al. (2001
and 2004), Schoof and Pryor (2001), Cannon and Whitfield (2002), Tatli et al., (2004), Coulibaly et al.,
(2005), among others.

Statistical methods to relate coarse-scale rainfall statistics to fine-scale rainfall statistics
The weather typing, neural network and empirical transfer function based methods, including quantile

mapping, as explained in the previous section, relate large scale atmospheric information to small scale
rainfall information. These methods were explained to be applied on an event or time step, e.g. day to
day, basis. They can equally well be applied to downscale rainfall statistics, such as probability
distributions or moments, quantiles or percentiles, extreme value distributions or rainfall intensities for
given return periods or recurrence intervals, etc.

Markov chain based disaggregation method

A Markov chain model simulates the state of a certain variable based on the previous states of that
variable and the transition probability matrix. The latter matrix contains the probabilities that a given
current state of the modelled variable changes to the same or another predefined state. The number of
previous states incorporated in the model defines the complexity, which may vary from a ‘first order’
Markov chain where only the last state is incorporated, to far more complex models. In our case the
modelled variable is the rainfall volume or intensity, but in the literature several other variables are also
modelled based on this approach (according to Salas et al.,, 2003: temperature, water storage in
reservoirs, stream flow, among others).

For example, imagine the simple first order Markov chain with two states, being wet (raining) and dry,
shown in Figure 20. In this case, the transition probability matrix is a two by two matrix as shown in
equation VI-1, where P(x|y) denotes the probability that, given state y, the following state will be x. The
rainfall intensity on the wet days is then generated based on random sampling from rainfall probability
distributions.

P(dry| dry) P(wet| dry)

P(df’y| wet) P(wet| wet) ViI-1

P(dry| wet)

/'

v /:I (wez) ) P(wet|wet)
/ /

P ( wet | dry)

Figure 20: Schematization of a first order two state Markov chain (adapted from Hocaoglu, 2011)

The number of different (non-zero) rainfall states can also be higher than one. For example, Giambelluca
and Oki (1987) used 10 (9 non-zero) rainfall states. The first Markov chain based approaches were
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designed for single site estimation (e.g. Giambelluca and Oki, 1987 and Rajagopalan et al., 1996), but
spatially distributed versions also exist (e.g. Mackay et al., 2001 and Allcorft and Glasbey, 2003).

The order-estimation problem has been discussed by several authors, e.g. Chin (1977), Katz (1981), Zhao
et al. (2001) and Baigorri et al. (2012), among others. The parameters of the Markov chain can also vary
in time, based on diurnal or seasonal variations, or atmospheric indices such as different atmospheric
circulation patterns or even based on a trend function. These types of Markov chains are called ‘non-
homogeneous’ Markov models (NHMMs) (e.g. Mimikou, 1983; Rajagopalan et al., 1996; Hughes et al.,
1999 and Bellone, 2000).

A Markov chain can incorporate a so called ‘hidden’ parameter, a parameter of which “we do not
assume an explicit, definitive observation of the state sequence, although the Markovian structure of
the state sequence is strictly implied” (Hughes et al., 1999). These methods mostly use the weather
state as hidden parameter and are known as Hidden Markov Models (HMMs) (e.g. Zucchini and Guttorp,
1991; Hughes et al.,, 1999; Bellone et al., 2000 and Kirschner, 2005). A HMM can also be non-
homogeneous, resulting in a NHHMM (non-homogeneous HMM) (e.g. Hughes et al., 1999 and Bellone,
2000).

Scaling relations

Many (geo-) physical processes and phenomena, including rainfall, show scaling properties over a wide
range of spatio - temporal scales. Indeed, for rainfall, relations can be found between fine-scale rainfall
characteristics and predictors at coarser scales (both temporal and spatial). These scaling properties of
rainfall are also investigated within the multifractal framework (see before). They are also more
generally used within a group of rainfall downscaling methods, as they make it possible to scale not only
the rainfall moments, but also its entire distribution.

The scaling properties of rainfall also become visible when analyzing IDF-relationships. As mentioned
before, the IDF-relations describe the relationship between the mean rainfall intensity with the duration
over which the precipitation is averaged and this for different return periods. The duration is also called
the ‘aggregation level’. The return period is the inverse of the frequency of occurrence. An example of a
set of IDF curves for different return periods is shown in Figure 21 (after Willems, 2000).
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Figure 21: IDF-relationships for return periods of 27,9, 2.7 and 1 years;
comparison of calibrated IDF-relationships (full lines) with observations (source: Willems, 2000)

With the IDF relations, the rainfall properties are investigated over a range of aggregation levels. Based
on the relation of the rainfall distribution parameters with the aggregation level, the scaling properties
and relations can be determined, as the aggregation level can be seen as the time variable in scaling
theory terminology. According to Willems (2000), for Belgium, these distribution parameters have a
power law relation with the aggregation-level, as represented in equation VI-2.

pB=aD’ VI-2

The existence of these scaling relations means that if the rainfall parameter values are known for one
certain aggregation level, they are also known for all other aggregation levels only by applying a scaling
factor, as shown in equation VI-3. Both equations VI-2 and VI-3 give the example of the parameter B,
where A is the scale factor and b the scaling exponent. The scaling exponent equals the linear slope of
the relationship between B and D in a double logarithmic plot. The scaling property of equation VI-3 is
also called “scale invariance'.

B, =A"B VI3

With these scaling relations, for example, 10 minute rainfall information can be derived based on hourly
data, as with the scaling parameters, the IDF determines the rainfall distribution for any aggregation
level. This type of downscaling is however restricted to the temporal aspect (e.g. Menabde et al., 1999,
Borga et al., 2005, Bougadis and Adamowski, 2006, Nhat et al., 2007).

The spatial aspect can be integrated, based on areal rainfall IDF relations. These areal IDFs can be based
on spatially distributed rainfall information (e.g. radar data), from which the scaling properties of the
rainfall can be derived and applied to support the downscaling of the rainfall PDFs to the desired (finer)
scales. Sivapalan and Bloeschl (1998) implemented a method based on the spatial correlation structure
of rainfall to construct IDF curves.
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Example from RainGain consortium: Intensity-Duration-Frequency relations and scaling properties in
practice:

To derive IDF-relationships, the proper type of distribution is selected first by an extreme value analysis
and the distribution parameters are calibrated for a given range of aggregation-levels. Afterwards, the
relationships between model parameters and aggregation-level are analyzed. The model parameter
values are eventually modified a little, while still being acceptable, to derive smooth relationships. The
parameter/aggregation-level relationships, together with the analytical description of the extreme value
distribution, then comprise the IDF-relationships.

As an example for Belgium, the scaling properties of the IDF relation parameters will be discussed
hereafter, based on Willems, 2000 and Willems, 2001b. In these works, he defined a ‘two-component
exponential distribution’ according to equation VI-4, where G,(x) and Gp(x) are two different exponential
distribution functions. These two different distributions represent two different rainfall regimes: storms
with convective rain cells (summer storms) and storms with many spatially clustered rain cells (cyclonic
and frontal winter storms). The parameter p, represents the proportion of the summer storms and the
parameter x; represents the threshold value for the rainfall intensity (above which the exponential
distribution is fitted).

Ga(x)=1—exp(— ﬂat) Vi-4
|

These distribution parameters can however also be a function of the aggregation level. When examining
this in a log-log plot, as shown in Figure 22, it becomes evident that there are indeed relations between
the parameters and the aggregation level.
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Figure 22: Scaling properties of the parameters of the two-component exponential distribution (after Willems, 2000)
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These relations can be approximated by the ones shown in equation VI-5 and they are a representation
of the scaling properties of the rainfall parameters with the aggregation level.

log(ﬁa [mm/h]) =-0.05- O.5810g(D[days])
log(ﬁb [mm/h]) =-0.55- 0.5810g(D[days]) VI-5
log(pa ) =-135- O.5810g(D[days])

In the Belgian case, as can be seen from equation VI-5, the scaling exponent b (equation VI-3) is the
same for all parameters, namely 0,58; indicating that, after scaling of the rainfall intensities, the same
exponential distribution is found for all aggregation-levels, as shown in equation VI-6. This means that, if
all rainfall intensities are scaled with a factor 7\b, also the specific rainfall intensity (the threshold level x;)
and the mean rainfall intensity exceeding the threshold (the scale parameter B) will be scaled with the
same factor.

G,p (;be) =G, p (x)

VI-6
G, p (Abx) =G, p (x)

Areal correction factors

A popular method from the water engineering field that in fact also relates fine to coarse scale rainfall
statistics is the areal correction factor (ACF, US Weather Bureau, NSSP, 1961, UK National Environmental
Research Council, NERC, 1975). This factor represents the mean ratio of the spatially averaged rainfall
volume over the point rainfall volume.

Two types of ACFs exist: for individual historical storms (storm-centered type) and for design rainfall for
given return periods (fixed-area type), e.g. Willems and Berlamont, 2002. The more general term ‘areal
correction factor’ or ‘areal correction coefficient’ was suggested by Vaes et al. (2005), as they discovered
that for urban drainage applications, the areal reduction factor (ARF) may also reflect an increase
instead of a reduction. Willems and Berlamont (2002) developed both types of ARFs for Belgium based
on a large number of simulations with the stochastic spatial rainfall generator for Belgium (Willems,
2001b). An example of the first type of ACF is shown in Figure 23, where the ACF is shown for an
aggregation level of 10 minutes and as a function of the size of the catchment area and the measured
point rainfall intensity (after Vaes et al., 2005). They found relationships between the ACF and (i) the
catchment area, (ii) the rainstorm volume, (iii) the distance between the catchment centre and the
location at which the point rainfall is considered, and (iv) the peak intensity (Willems and Berlamont,
2002).

For a review on areal reduction factors, the reader is referred to Srikanthan (1995) or more recently,
Svensson and Jones (2010) and Willems et al. (2012). Applications of the areal reduction factors to
rainfall estimation include Lorente and Redafio (1990), Asquith (1999), Allen and DeGaetano (2005),
among others. The use of radar data within the ARF framework has also been proposed and tested (e.g.
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Stewart, 1989, Durrans et al., 2002, Lombardo et al., 2006 and Overeem et al., 2010) and shows good
results compared to the other ARF methods. It is clear that also the scaling properties of rainfall, as
discussed in the previous sections, might be very helpful in deriving ARFs.
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Figure 23: Median values for the areal correction coefficients (type I) for an aggregation level of 10min
as a function of the measured rainfall intensity at the central point location (after Vaes et al., 2005)

iii. Comparison methods

Before adjusting and integrating the radar measurements to and with the rain gauge measurements, it is
important to have an idea of the performance of the two compared to each other. This comparison is
done as a check for the calibration and correction procedures of the radar (the consistency check) but it
could also be part of the quality control on the radar and gauge measurements. As mentioned in the
previous section, the radar and gauges do not actually measure the same types of rainfall. This means
that there are several approaches for the comparison, which either account for the differences and try
to compensate or accept the differences and try to incorporate them into the comparison.

These methods will be discussed hereafter, but they can all be applied on different timescales. The
rainfall measurements can be compared on an event basis by firstly selecting from the time series the
different rain events or storms and comparing one or more of the rain event characteristics such as the
total rainfall amount, the peak intensity, the averaged rainfall intensity during the event, etc. The
comparison could however also be done over a longer period of time, e.g. monthly statistics, seasonally,
yearly, even for longer time periods. The comparison could also be based on probability distributions of
the rainfall intensities (possible for different averaging times) or summarized in the form of IDF
(intensity - duration — frequency) relations (for an example of a set of IDF curves for different return
periods, the reader is referred to Figure 21 on p56, after Willems, 2000).

Methods accounting for the differences between the measurements

In this approach, the differences between the two types of measurements are accounted for and the
spatial scale of one of the two is adapted towards the scale of the other. There are two possibilities,
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either to downscale the radar results to point scale or to spatially interpolate the point measurements
(e.g. Sinclair and Pegram, 2005). The downscaling of the radar results is a rather uncommon way of
comparing the measurements. Section ii of this chapter discussed the different downscaling methods,
an example is given in the box below.

Example from the RainGain consortium: Downscaling radar fields to revisit standard comparison tools

between radar and point measurement

Gires et al. (2013) suggest to use downscaling in order to bridge the gap between the observation scale
of weather radar and point measurements, but also to take this gap into account when using the
standard comparison tools (such as the temporal evolution of the rainfall rate or the cumulative rainfall
depth, the normalized bias, the RMSE, the correlation coefficient, the Nash-Sutcliffe coefficient, etcetera
...). The analysis is performed on 4 rainfall events that occurred in the Paris area between 2009 and
2011. The radar data comes from the Météo-France mosaic (with a resolution of 1 km in space and 5
min in time), and the rain gauge data (with a resolution of few tens of cm in space and 5 min in time)
comes from the operational network of 26 rain gauges of the Direction Eau et Assaisnissement of
Conseil general (local authority in charge of urban drainage) of the Seine-Saint-Denis County (North-East
of Paris, France).

More precisely Gires et al. downscale the radar data down to the resolution of the rain gauges. This is
achieved by implementing 7 steps of spatio-temporal Universal Multifractals cascades on the radar data
and then re-aggregating the obtained field in time. This process enables to generate realistic output of
2187 x 2187 “virtual point measurement” devices located within each radar pixel. The variability among
these “virtual points” represents the one that would naturally be expected simply because of small scale
rainfall variability.

Then in order to quantify the impact of small scale rainfall variability on the standard comparison scores
(parameters such as the RMSE, normalised bias etcetera) a “virtual point measurement” is randomly
selected for each radar pixel and the corresponding scores are computed. To generate a distribution of
possible values for each score, 1000 sets of 26 virtual rain gauges locations (one per radar pixel) are
tested. Figure 24 displays results for RMSE with a 15 minutes resolution (the results for other scores and
temporal resolution are visible in Gires et al. 2013).

It appears that this influence is twofold. First the target values of the scores are not the optimum ones
because rainfall variability “naturally” worsens them. This worsening which is neglected in published
comparison is significant. Second because of the random position of the point measurements within a
radar pixel there is an expected uncertainty on a computed score reflected in Figure 24 a by the width of
the distribution. When rainfall rate or cumulative depth temporal evolution are compared the authors
also recommend to display the uncertainty bounds (i.e. the quantiles of the “virtual point
measurements”) associated with the radar data at the point measurement resolution to have immediate
insight into the effect of small scale rainfall variability. An example is provided Figure 24 b and c.
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Figure 24: (a) Histograms the RMSE scores with a 15 min time step computed for the 1000 samples of possible combinations of
virtual rain gauges for the 4 studied event (b) Rain rate temporal evolution for 14 July 2010 for a radar pixel in Seine-Saint-
Denis: rain gauge (dash), radar (solid), and uncertainty range of the radar measurement at the rain gauge scale. (c) As (b) for
temporal evolution of cumulative depth. (Adapted from Gires et al. 2013)

Through spatial interpolation or upscaling of the point rainfall measurements at ground-level, it is
possible to form rainfall data at radar scale before comparing the two sources of rainfall information.
There are several principles available, ranging from very straightforward to more complex methods. The
interpolation procedures such as the isohyetal method or ordinary kriging will be discussed, but also
other methods, such as the Thiessen method, fall within this category.

The isohyetal method (Linsley et al., 1949 and Jain and Singh, 2005) draws lines of equal rainfall depth or
intensity based on the point measurements of the gauges. The method also imposes several restraints
on the form of the isohyets. Figure 25 B shows an example result of the isohyetal method.

The Thiessen polygon method (Thiessen and Alter, 1911, Linsley et al., 1949, Brassel and Reif, 1979 and
WMO, 1986) assigns to each point in space the value of the closest rain gauge, without any interpolation
or distance factor. Figure 25 shows an example of a drainage basin with rain gauge measurements and
the application of the isohyetal (B) and the Thiessen methods (C).

.46

Figure 25: Rainfall interpolation methods based on gauges: A: a drainage basin with rain gauges (their position is marked by
their respective measurement values), B: the spatial rainfall distribution based on the isohyetal method and C: the spatial
rainfall distribution based on the Thiessen method (adapted from Fetter, 1994)

The inverse distance weighting procedure (IDW, Burrough and McDonnell, 1998, Miras-Avalos et al.,
2007 and Lu and Wong, 2008) is an interpolation method that calculates the rainfall value at a given
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point from measurements in the proximity of that point. The weights assigned to these measurements
are inversely related to their distance to the point.

The ordinary kriging method (KRI) is a geostatistical method using only rain gauge data. The original
method (Goovaerts, 1997) is a spatial interpolation of a random field of observations at several different
locations (in our case, rain gauges or other point information rainfall sources). The rainfall estimation (Ug
in equation VI-7) at any location is a weighted linear combination of the observations of the nearby
gauges, where the weights (lambda) are computed by solving a set of linear equations (size equal to the
available number of gauges) to obtain the best linear unbiased estimator assuming a constant unknown
mean across the field. This is done based on a variogram that characterises the spatial variability of the
estimated rainfall field (based only on the gauges). The ordinary kriging method can be used to compare
the spatially interpolated gauge rainfall fields with the radar rainfall fields, but also to assess the added
value of the radar measurements, when comparing the results from the ordinary kriging method to
methods using radar data.

N
U, = 2 AG, VI-7

Methods incorporating the differences between the measurements

In this approach, the differences between the two types of rainfall data are accepted and the
comparison will be less strict as they cannot be identical (nor should they be). The closeness of the
measurements however gives a general idea of the overall performance of the two. It is also an option
to calculate (or estimate if calculation is not possible) the uncertainty on each measurement and to use
not only the exact values in the assessment of the closeness of the measurements, but also the
uncertainty margins of each of the measurements. This allows for a more comprehensive comparison.

iv. Adjustment or integration principles and methods
Several adjustment or integration principles and methods exist. They mostly acknowledge that the radar
observes the spatial distribution of the rainfall fields correctly, but that rain gauges (or other point
measurements such as disdrometers) have a higher accuracy at the point scale. A summary of the
different approaches is given and each method is discussed thereafter. An extensive review report on
gauge adjustment methods can be found in Gjertsen et al. (2003). This COST 717 report also discusses
the operational use of these methods (in Europe).

Adjustment methods

The adjustment methods aim to correct one of the sources of rainfall information, the radar estimates,
based on the other, the rain gauge measurements. For this adjustment, several different methods exist
and are discussed hereafter.

Mean field bias correction

The Mean Field Bias correction method (MFB) assumes that the radar estimates are affected by a
uniform multiplicative error. The adjustment factor Cys is given by a comparison with the rain gauges as
determined by equation VI-8, where N is the number of valid radar-gauge pairs, G; and R; are the gauge
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and radar values associated with gauge i. The offset between the gauges and the radar can be due to an
offset in the electronic calibration or an offset in the Z-R relation used for the rainfall estimation. This
method is one of the simpler methods and has been applied by Fulton et al. (1998), Harrison et al.
(2000), Borga et al. (2002), Holleman (2007), among others.

N N
Crrp = 2 G, / 2 R, VI-8

The range dependent adjustment (RDA) procedure is a form of bias adjustment. However, the bias is

Range-dependent adjustment

allowed to be a function of the distance from the radar. The range dependence of the bias can be
explained by beam broadening and attenuation effects. The distance weighing can be done in several
ways, e.g. Goudenhoofdt and Delobbe (2009) used a second order polynomial regression line (in the log
scale) fitted by least squares minimization. For more information, see Michelson et al. (2000) or
Goudenhoofdt and Delobbe (2009), among others.

Brandes correction

The Brandes correction method (BRA) was proposed by Brandes (1975) and comprises of a correction
factor calculated based on an interpolated field of correction factors calculated at each rain gauge. This
is thus a spatially distributed correction method, opposed to the MFB method. Equation VI-9 shows this
principle, where w is the weighting factor, d is the distance from the grid point to the nearest gauge and
k is @ smoothing parameter. This factor k can be chosen and optimized, for example, Goudenhoofdt and
Delobbe (2009) used k = (26)~1, where delta is the gauge density of the network. The method is thus
a spatial method and it follows the Barnes objective analysis scheme (using a negative exponential
weighting function).
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Several different kriging methods exist, such as kriging with radar based error correction, kriging with

VI-9

external drift, etc. These methods will be discussed hereafter.

Kriging with radar-based error correction

The kriging method with radar-based error correction (KRE) method is an expansion of the ordinary
kriging method, as it uses radar data to correct the errors associated with its estimates. The ordinary
kriging method is used, but this time based on the radar data instead of the gauges (only the radar data
from the gauge sites are used). This rainfall field is subtracted from the original radar field to obtain the
error field, which is added to the gauge based kriging field. The method thus adds the spatial variability
of the radar measurements to the gauge based kriging field.

Kriging with external drift
The kriging with external drift (KED) method is similar to the ordinary kriging method, except that the
rainfall estimates are now a function of the radar estimates instead of the gauge information, with
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additional constraints. These constraints take the form of equation VI-10, where R; are the radar values
at the gauge points, lambda are the weights and Rq is the estimate at a chosen location. The weights for
each specific location are calculated by solving the kriging equations with the additional constraints.
More information can be found in Wackernagel (2003). KED is one of the most widely used kriging
methods.

N
2&&=R0 VI-10

Regression kriging

Regression kriging is, like the other kriging methods, a spatial interpolation technique. It combines a
regression model with the simple kriging of the residuals of this regression model. The regression of the
dependent variable is based on a secondary variable (which could be any variable, but this is most
commonly a land surface parameter such as the elevation or others), in order to remove the trend
between the two, before using the residuals of this detrending for simple kriging. Hengl et al. (2007)
used the term regression kriging, while Goovaerts (1999) used ‘kriging after detrending’. The approach
of the methods is however identical.

Integration methods

There are, however, also methods which integrate the radar and gauge measurements and use the
combination of the two to obtain the best possible rainfall estimates. These methods, such as co-kriging
and Kalman filtering, are mostly more complex than the previous ones.

Co-kriging

Co-kriging uses both rain gauge and radar data in a procedure similar to the ordinary kriging method. It
was developed for regions with a very limited number of gauges, so very limited information about the
spatial variability of the rainfall fields was captured by those gauges. The second variable, the radar
could thus help recover the variability and improve the quality of the rainfall estimates. The method is
described by equation VI-11, where G, are the gauge measurements and R¢ the radar measurements.
Lambda and gamma are the respective weights of the gauge and radar measurements, and are
computed by resolving the covariance and cross-covariance matrices. More information can be found in
Krajewski, (1987), Creutin et al. (1988) and Sun et al. (2000), among others. The number of radar grid
points (M) is mostly at least an order of magnitude higher than the number of gauges (N).

N M
R=24Q+Zn& VI-11
i= =1

Kalman filter

This filter implements an iterative process designed by Kalman (1960). It is widely applicable to several
modeling applications. The Kalman filter method can be applied to remove time varying field bias. In
general, the Kalman filter consists of two types of equations: state-space model or system equations and
observation equations. The general form of the problem the Kalman filter addresses is shown in
equation VI-12, where the matrix A represents the link between the previous values of the state
variables (xi.1) with their current value (x,), and the matrix B represents the influence of the (optional)
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control value or control input u,;. H represents the relation between the state variables x, and the
measurements z,. The random variables wy; and v, represent respectively the process and
measurement noise. In our applications, the state variables are the QPE estimates and the
measurements are the radar and rain gauge measurements, optionally extended with other sources of
rainfall information.

x, =Ax,_ +Bu,_ +w, VI-12

z, =Hx, +v,
The Kalman filter considers an iterative two-step procedure. As an initialization, the current state of the
modeled variables is estimated. In step 1, the prediction or time update step, the state variables are
projected to the next time step by means of equation VI-13. The predicted new state is called the ‘prior
estimate’, as this estimate will be corrected when more recent measurements become available. The
error covariance matrix P, which contains the error variances and covariances of/between the prior
estimates of the different state variables, is also projected to the next time step.

A

X; = Ax,_, + Bu,_,

P.=AP_A" +Q

k

VI-13

Hereafter in step 2, the correction or measurement update step, the prior estimate is corrected based
on the current measurements z using a weighting method, with higher weights for estimates with higher
accuracy. This weighting method uses the Kalman Gain K. The corrected estimate is known as the
‘posterior estimate’. The error covariance matrix P is also updated. The mathematical equations are

shown in equation VI-14, where )?]; represents the prior estimates of the state variables and fck the

posterior state variables’ estimates, K is the Kalman Gain or blending factor, Q is the process noise
covariance matrix and R the measurement noise covariance matrix.

K, =PH" (HP.H" +R)
X =% +K, (z, - Hi;) VI-14
B = (]_KkH)PI?

Because of the algorithm's recursive nature, it can run in real time using only the present input
measurements and the previously calculated state; no additional past information is required. Through
the covariance matrices Q and R, the Kalman filter can account for the model and observation errors
(see also section v of this chapter on uncertainty analysis).

More information on the Kalman filter method can be found in Maybeck (1979, Chapter 1), Sorenson
(1970) or Welch and Bishop (2006). The method has been applied for urban rainfall estimation before by
Ahnert (1986), Smith and Krajewski (1991), Anagnostou et al. (1998), Seo et al. (1999), Todini (2001),
Dinku et al. (2002), Seo and Breidenbach (2002), Anagnostou and Morales (2002), Chumchean (2004)
and Chumchean et al. (2006), among others.

Example: Kalman filter in practice:

RainGain WP2 Page 65 of 93




RainGain review document January 2013 Fine scale rainfall estimation

Chumchean et al. (2006) proposed a real time procedure for the integration of radar error correction
and bias adjustment in the radar rainfall estimation procedure. The error correction strategies in the
paper correct errors in the reflectivity measurements and the reflectivity conversion (Z-R). For the mean
field bias removal, the Kalman filter was applied to the radar data. For the validation of their approach, a
7-month record of radar and rain gauge rainfall for Sydney, Australia, were used. Data from a C-band
Kurnell-radar were used together with point rainfall information for 173 rain gauges in the proximity of

the radar.

They conclude that, as shown in Figure 26, after application of the bias-adjustment based on the Kalman
filter, the best possible radar-rainfall estimates (lowest RMSE) were achieved for all cases investigated in
their research. This conclusion, however, only holds when the other error sources are accounted for.
They indeed conclude that, while the effect of the error correction strategies is small compared to the
bias correction, it is a very important step in the radar processing chain. Without proper error
correction, the bias corrected results could even be worse than the original estimates.

a) No bias correction
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Figure 26: Validation of the RMSE for radar based rainfall QPEs for a different number of calibrated gauges and different error
correction strategies with a) no bias adjustment and b) Kalman filtering. Note: “GHNBO” denotes correction of ground clutter,
hail, and noise and range-dependent bias resulting from bright band and different observation altitude, “SC” denotes correction
of range-dependent bias resulting from increases in observation volume (scaling correction) and “ZR” denotes correcting for
variation of Z-R relationship for convective and stratiform rainfall (storm classification) (Adapted from Chumchean et al., 2006).

Comparison of different methods

Several researchers compared the different methods for their own radar and rain gauge data. An
overview will be given, but no overall conclusions could be made, since not all studies compare the
same techniques and the comparison also depends on site specific radar and rain gauge characteristics.
Only a limited number of studies have focused on the impact of these characteristics, such as for
example the density of the gauge network (e.g. Sokol, 2003 and Chumchean et al., 2006).
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Most studies (e.g. Creutin and Obled, 1982, and Goovaerts, 2000, among others) show that for low
density rain gauge networks, the geostatistical interpolation methods (KED, KRE, Co-kriging) outperform
the other methods that ignore the spatial patterns of the rainfall fields, such as MFB or others. For high
density rain gauge networks, the added value of KED and KRE over ordinary kriging is rather low,
especially for frontal or long-lasting spatial storms in the winter season (Goudenhoofdt and Delobbe,
2009). For convective storms, which frequently occur in the summer season, the added value of the
radar estimates is evident. Hevesi et al. (1992a and b) found that the co-kriging method performed best
for their case study. Other researchers (e.g. Haberlandt, 2006, Schuurmans et al., 2007, Goudenhoofdt
and Delobbe, 2009, Velasco-Forero et al., 2009) identified the kriging method KED to be the best
estimator (the KRE method gave mostly similar results as the KED method).

The Kalman filter approach generally also gives good results, but comparison to the kriging methods is
rather rare. Most studies only compare but a small number of methods and mostly for short time
periods, so the conclusions are not generally applicable to any given situation.

Example from RainGain consortium: Adjustment methods in practice:

Shrestha et al. (2012) investigated the accuracy of rainfall estimates from both C- and X-band weather
radars and their application for stream flow simulation. They also tested several adjustment procedures
(Range dependent adjustment, Mean field bias correction and Brandes spatial adjustment), which were
applied to the raw radar measurements and used supplementary rainfall information from a network of
12 rain gauges. The C-band radar at Wideumont and the X-band LAWR-CR radar at Leuven, are used.
The C-band radar is operated by the Royal Meteorological Institute of Belgium (RMI), while the X-band
radar is operated jointly by Aquafin and KU Leuven (Goormans and Willems, 2012).

Their results showed that the raw radar estimates could be greatly improved by all the adjustment
procedures. For the different adjustment methods, the Brandes method slightly outperformed the
others (MBF and RDA for the X-band radar and MFB, for the C-band radar), as shown in Figure 27. The
gauge-radar residuals however remain quite large, even after the adjustments.

LAWR-CR X-Band KMI-BE C-Band
5 7
(a) ™ Raw data (b) mRawdata
E 4 ®Range dependent adjustment E 6 4 BMFB adjustment
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Figure 27: Comparison of the performance of the radar adjustment procedures: a) LAWR-CR X-band and b) RMI C-band,
comparison of the statistical indicators for summer (adapted from Shresta et al., 2012)
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Goudenhoofdt and Delobbe (2009) investigated a set of adjustment methods for the C-band radar of the
RMI (including MFB, RDA and BRA, but also kriging based methods) and found the kriging methods KRE
and KED to be the best methods, as can be seen in Figure 28. Their research supports the conclusion of
Shrestha et al. (2012) that the Brandes method outperforms the MFB and RDA approaches.

2.5;r

ORI MFB RDA SRD BRA KRI KRE KED
methods

Figure 28: Comparison of the performance of the radar adjustment procedures (after Goudenhoofdt and Delobbe, 2009)

Shrestha et al. (2012) also concluded that the adjusted X-band radar measurements are better estimates
than the corresponding C-band measurements, as can be seen in Table 2. This table shows the different
statistical indicators for the summer and winter periods after the adjustments on the LAWR-CR (X-band)
and RMI (C-band) radar based estimates. Further investigation showed that the rain gauges and radars
could simulate the spatially more uniform winter storms with almost the same accuracy. The results are
different for summer events, where the added value of the radar data becomes more evident.

Table 2: Different statistical indicators for the summer and winter periods
after the adjustments on the LAWR-CR X-band and RMI C-band radar based estimates (after Shrestha et al., 2012).

. Summer period Winter period
ffZ.‘Zi‘Iﬁi LAWR-CR RMIBE | LAWR-CR RMIBE
X-band C-band X-band C-band
RMSE [mm] 3.09 491 3.40 3.76
MAE [mm] 2.06 3.02 242 438
NSE [] 0.70 0.48 0.55 0.66

v. Incorporating uncertainties when merging rainfall data
When rainfall measurements with different resolution are merged together to obtain best rainfall
estimates, question is whether the finer resolution data should be upscaled to the coarser scale data, or
vice versa. This of course depends on the application. It indeed depends on the scale at which the
rainfall data is required. For urban drainage applications, fine scale rainfall estimates are required; hence
downscaling will be more appropriate than interpolation or upscaling.
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The different possible approaches for the merging process have been discussed already in the previous
section of this chapter. That section also explained that the differences in accuracy between the
different types of rainfall data can be accounted for. In addition to this, the conditional merging
approach was explained earlier in this chapter (see Interpolation and upscaling methods, p43). This
section explains how the merging can be done taking the uncertainties in the different rainfall data into
account. Use is made of methods that have been discussed before, e.g. kriging methods or Kalman
filtering techniques, but more specific methods exist as well.

Kalman filter

The Kalman filtering technique has the ability to integrate different sources of rainfall information in one
procedure, while at the same time taking the uncertainty in account. The method was explained in
detail in section iv of this chapter. The Kalman filter propagates the error information explicitly through
dynamic equations based on the state error covariance matrix. It is also possible to use an ensemble of
model trajectories in order to estimate the error covariances (Evensen, 1994). This technique is known
as the ensemble Kalman filter (Reichle et al., 2002).

Kriging methods

The kriging based methods such as kriging with external drift (KED) and kriging with radar-based error
correction (KRE), as well as the Co-kriging approach (all described in chapter VI) are widely used to
merge radar and rain gauge rainfall information. They not only provide a merged rainfall field, but also
an uncertainty assessment through the so called kriging standard deviation (by theoretical interpolation,
Moulin et al., 2009). The uncertainty on these error estimates however can be rather high (e.g.
Schiemann et al., 2010); which would mean that in this case other ways of uncertainty assessment are
preferable. The quality of the kriging methods as merging tools is extensively documented in the
literature, as shown in section iv of this chapter.

Radar QPE methods incorporating error/uncertainty assessment

The goal of the merging is to derive quantitative precipitation estimates (QPE). Several QPE methods
have specially been designed to incorporate the error structure of the radar based rainfall estimates.
These methods (e.g. Habib et al., 2004, Ciach et al., 2007, Germann et al., 2009, Kirstetter et al., 2010)
generally have a three step approach: first, a thorough quality control of all rainfall information sources,
including rejection of suspicious or uncertain sources; in a second step, some form of ‘reference rainfall’
is deduced after which, in the last step, a statistical error model is set up. The reference rainfall is mostly
a kriged rainfall field based on rain gauge information, but the specifics of each step depend on the
author. With this approach, uncertainty can be reduced and a set of possible ensembles generated,
which helps to improve the radar QPEs.

Habib et al. (2004) use an observational-based empirical approach called the ‘conditional distribution
transformation’ (CDT) to analyze different characteristics of the total radar-rainfall estimation error. The
purpose of the CDT method is to estimate the actual uncertainties in the area averaged radar based
rainfall estimates, based on the comparison with rain gauge data.
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Ciach et al. (2007) developed a probabilistic QPE (PQPE) method, which uses an empirically based error
structure model for the radar data. This error structure model is based on a functional-statistical relation
between the radar rainfall and the reference rainfall and comprises of two components, a deterministic
distortion function, which describes the systematic conditional bias and a multiplicative stochastic
factor, which quantifies the remaining, randomly distributed errors.

Germann et al. (2009) propose a real time rainfall estimate ensemble generator based on radar
measurements. The method uses LU decomposition and is designed for the Alps. The ensemble
generator perturbs the original (deterministic) radar precipitation field with a stochastic component,
which has the correct space—time covariance structure as defined by the radar error covariance matrix.
The perturbation fields are generated based on singular value decomposition of the error covariance
matrix, stochastic simulation based on the ‘LU decomposition algorithm’ (Goovaerts, 1997) and
autoregressive filtering. This approach allows the spatial dependence of the mean and covariances of
radar errors to be represented accurately, so that every one of the perturbations in the ensemble is a
possible ‘true’ rainfall field.

Kirstetter et al. (2010) analyzed the statistical distribution and the spatial and temporal structure of the
residuals between radar based rainfall estimates and reference values. The reference rainfall fields were
obtained by using anisotropic block kriging technique after thorough quality control of the rain gauge
data. The variance of the residuals was also estimated using the error variance separation concept
(Ciach and Krajewski, 1999). The statistical distributions (PDFs) of the residuals were determined and
can be approximated by a double exponential model. The parameterization of the error model is found
to be dependent of the rain rate, rain type, accumulation period and distance from the radar.

vi. Conclusion
In order to achieve the best possible fine scale rainfall estimates, all different rainfall sources (all
available weather radar products, be it S-band, C-band or X-band radar data, but also the different types
of rain gauges, disdrometers and even microwave links) might have to be integrated. The inclusion of
rainfall information from other suitable sources is also possible.

Merging of radar data and other sources of rainfall information, such as rain gauge data or other rainfall
measurements, should always be the last step in the processing chain to achieve fine scale rainfall
estimates. The necessary corrections need to be done first as well as ground truthing of the radar data,
as discussed in the previous chapters.

Before the integration of different sources of rainfall information can be successfully achieved, it is of
key importance that the quality and availability of each of these sources is assessed. It is important to
know the possible errors in the data, as well as the uncertainty in the measurements. Each data source
should be subjected to a thorough quality check, flagging the potential erroneous data or data
associated with high uncertainties.

Another preference is that the temporal and spatial resolutions of the different rainfall sources to be
merged are similar. Rainfall estimates with other resolution (in space and/or time) can be adapted to
the scales of the others by means of interpolation, upscaling or downscaling methods.
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