A flexible hydrodynamic modelling framework for GPUs and CPUs: Application to urban flood events

Luke S. Smith Newcastle University

RainGain Intl. Workshop on Urban Pluvial Flood Modelling, Met Office, 6th October 2014

With thanks to Qiuhua Liang, Paul Quinn, Jingming Hou, Dave Alderson, Chris Kilsby, Jeff Neal, Environment Agency and Met Office. Part-funded by grants from EPSRC (EP/K031678/1) and NERC (NE/K00896X/1).

Rationale

 Detailed catchment-scale modelling

Belford, Northumberland

- Natural flood management
- Barriers, pipes, hydrology...
- Tsunami propagation Japan/China
 - Multi-scale real-time warnings
- Broad-scale flood risk analyses
 London
 - Complex urban topography
 - Multi-source flood potential

Shallow flow models

• Godunov-type finite-volume scheme (Smith *et al.* 2014 in Urban Water Journal)

- Shock-capturing
- Stencil operations
- Directionally unsplit
- Second-order accuracy (Smith and Liang 2013 in Computers & Fluids)
 - MUSCL-Hancock
- Partial-inertial simplification (Bates *et al.* 2010 in J. Hydrology)
 - No Riemann solver required

History and Moore's 'law'

The CPU in 1997

- 8.8 million transistors
- \$469 at launch

History and Moore's 'law'

The CPU in 1997

- 8.8 million transistors
- \$469 at launch

Exponential increase in power

- Gordon Moore's 'Law'
- Electronics magazine, 1965

History and Moore's 'law'

The CPU in 1997

- 8.8 million transistors
- \$469 at launch

Exponential increase in power

- Gordon Moore's 'Law'
- Electronics magazine, 1965

Multi-core transition

Stagnant clock speeds

Heterogeneous architectures

CPU

- Low-latency processor
- Low ratio of ALUs/control units
- Fast response times
- High RAM capacities
- General purpose computation

GPU... (APUs, Coprocessors, etc.)

- High-throughput processor
- High ratio of ALUs/control units
- Significant host-bus latency
- Limited DRAM capacities
- Challenges for optimisation

Graphics processing unit

CPU		High-grade GPUs	Compute Server
	inter re ^m i7		
Model: Inte	Xeon E5-2609	AMD FirePro V7800 (x2)	NVIDIA Tesla M2075 (x4)
Cost:	£311	£1,200	£8,400
SP GFLOPS:	Unknown	4032	5152
DP GFLOPS:	77	806	2064
Memory:	2GB (in price)	4GB (2GB x 2)	24GB (6GB x 4)
Cost/GFLOP	£4.04	£1.49	£4.07
DP multiplier/device: 1.0x		5.2x	6.7x

- Research platform
- Plug-in based software
 - Sediment transport
 - Discrete element modelling
- Visualisation in real-time
- Dynamic code generation
 - Cross-platform, crossarchitecture
 - Intel CPU, NVIDIA/AMD GPU, IBM Cell, Parallella, etc.

Smith LS, Liang Q (2013) Towards a generalised GPU/CPU shallow-flow modelling tool, Computers & Fluids, 88:334-343.

Why bother?

Simulation: 50 hours with FV SWEs 1st order

Simulation: 50 hours with FV SWEs 1st order

Simulation: 50 hours with FV SWEs 1st order

Simulation: 50 hours with FV SWEs 1st order

Simulation: 50 hours with FV SWEs 1st order

Why bother?

- · Good match attainable at all resolutions tested
- Calibration only possible against known extent and river hydrometry
- Sensitivity varies significantly
 - Low velocity flows, flood defences overtopped
 - Expect high resolutions to give low floodplain sensitivity

- · Good match attainable at all resolutions tested
- Calibration only possible against known extent and river hydrometry
- Sensitivity varies significantly
 - Low velocity flows, flood defences overtopped
 - Expect high resolutions to give low floodplain sensitivity

- Good match attainable at all resolutions tested
- Calibration only possible against known extent and river hydrometry
- Sensitivity varies significantly
 - Low velocity flows, flood defences overtopped
 - Expect high resolutions to give low floodplain sensitivity

- · Good match attainable at all resolutions tested
- Calibration only possible against known extent and river hydrometry
- Sensitivity varies significantly
 - Low velocity flows, flood defences overtopped
 - Expect high resolutions to give low floodplain sensitivity

- Good match attainable at all resolutions tested
- Calibration only possible against known extent and river hydrometry
- Sensitivity varies significantly
 - Low velocity flows, flood defences overtopped
 - Expect high resolutions to give low floodplain sensitivity

Why bother?

- Hypothetical breach in defences in Thamesmead, London
- High flow velocities and high sensitivity

Liang Q, Smith LS (2014) A High-Performance Integrated Hydrodynamic Modelling System for Urban Flood Simulations, *Journal of Hydroinformatics*, [under review].

Why bother?

- Hypothetical breach in defences in Thamesmead, London
- High flow velocities and high sensitivity

Liang Q, Smith LS (2014) A High-Performance Integrated Hydrodynamic Modelling System for Urban Flood Simulations, *Journal of Hydroinformatics*, [under review].

- Hypothetical breach in defences in Thamesmead, London
- High flow velocities and high sensitivity

Liang Q, Smith LS (2014) A High-Performance Integrated Hydrodynamic Modelling System for Urban Flood Simulations, *Journal of Hydroinformatics*, [under review].

- 15:55 on 28 June 2012
- 50mm widely in 2 hours
- Severe transport disruption
 - Strategic transport routes
 - Blue light routes
 - Light rail services
 - National rail services

UK Met Office Operational NIMROD Rainfall Radar 28-Jun-2012 12:45 UTC

Meteorological data is Crown Copyright (C) Met Office. Spatial data is Crown Copyright (C) Ordnance Survey, under Open Government Licence v2. Processed by Newcastle University.

- 15:55 on 28 June 2012
- 50mm widely in 2 hours
- Severe transport disruption
 - Strategic transport routes
 - Blue light routes
 - Light rail services
 - National rail services

UK Met Office Operational NIMROD Rainfall Radar 28-Jun-2012 13:35 UTC

Meteorological data is Crown Copyright (C) Met Office. Spatial data is Crown Copyright (C) Ordnance Survey, under Open Government Licence v2. Processed by Newcastle University.

- 15:55 on 28 June 2012
- 50mm widely in 2 hours
- Severe transport disruption
 - Strategic transport routes
 - Blue light routes
 - Light rail services
 - National rail services

UK Met Office Operational NIMROD Rainfall Radar 28-Jun-2012 14:25 UTC

Meteorological data is Crown Copyright (C) Met Office. Spatial data is Crown Copyright (C) Ordnance Survey, under Open Government Licence v2. Processed by Newcastle University.

- 15:55 on 28 June 2012
- 50mm widely in 2 hours
- Severe transport disruption
 - Strategic transport routes
 - Blue light routes
 - Light rail services
 - National rail services

UK Met Office Operational NIMROD Rainfall Radar 28-Jun-2012 15:15 UTC

Meteorological data is Crown Copyright (C) Met Office. Spatial data is Crown Copyright (C) Ordnance Survey, under Open Government Licence v2. Processed by Newcastle University.

- 15:55 on 28 June 2012
- 50mm widely in 2 hours
- Severe transport disruption
 - Strategic transport routes
 - Blue light routes
 - Light rail services
 - National rail services

UK Met Office Operational NIMROD Rainfall Radar 28-Jun-2012 16:05 UTC

Meteorological data is Crown Copyright (C) Met Office. Spatial data is Crown Copyright (C) Ordnance Survey, under Open Government Licence v2. Processed by Newcastle University.

- 15:55 on 28 June 2012
- 50mm widely in 2 hours
- Severe transport disruption
 - Strategic transport routes
 - Blue light routes
 - Light rail services
 - National rail services

UK Met Office Operational NIMROD Rainfall Radar 28-Jun-2012 16:55 UTC

Meteorological data is Crown Copyright (C) Met Office. Spatial data is Crown Copyright (C) Ordnance Survey, under Open Government Licence v2. Processed by Newcastle University.

- 15:55 on 28 June 2012
- 50mm widely in 2 hours
- Severe transport disruption
 - Strategic transport routes
 - Blue light routes
 - Light rail services
 - National rail services

UK Met Office Operational NIMROD Rainfall Radar 28-Jun-2012 17:45 UTC

Meteorological data is Crown Copyright (C) Met Office. Spatial data is Crown Copyright (C) Ordnance Survey, under Open Government Licence v2. Processed by Newcastle University.

- 15:55 on 28 June 2012
- 50mm widely in 2 hours
- Severe transport disruption
 - Strategic transport routes
 - Blue light routes
 - Light rail services
 - National rail services

UK Met Office Operational NIMROD Rainfall Radar 28-Jun-2012 18:00 UTC

Meteorological data is Crown Copyright (C) Met Office. Spatial data is Crown Copyright (C) Ordnance Survey, under Open Government Licence v2. Processed by Newcastle University.

Newcastle upon Tyne Surface Water Model (Input from UKMO NIMROD) 28-Jun-2012 15:15 UTC

Newcastle upon Tyne Surface Water Model (Input from UKMO NIMROD) 28-Jun-2012 15:30 UTC

Newcastle upon Tyne Surface Water Model (Input from UKMO NIMROD) 28-Jun-2012 15:45 UTC

Newcastle upon Tyne Surface Water Model (Input from UKMO NIMROD) 28-Jun-2012 16:00 UTC

Newcastle upon Tyne Surface Water Model (Input from UKMO NIMROD) 28-Jun-2012 16:15 UTC

Newcastle upon Tyne Surface Water Model (Input from UKMO NIMROD) 28-Jun-2012 16:30 UTC

Newcastle upon Tyne Surface Water Model (Input from UKMO NIMROD) 28-Jun-2012 16:45 UTC

Newcastle upon Tyne Surface Water Model (Input from UKMO NIMROD) 28-Jun-2012 17:00 UTC

Newcastle upon Tyne Surface Water Model (Input from UKMO NIMROD) 28-Jun-2012 17:15 UTC

Newcastle upon Tyne Surface Water Model (Input from UKMO NIMROD) 28-Jun-2012 17:30 UTC

Newcastle upon Tyne Surface Water Model (Input from UKMO NIMROD) 28-Jun-2012 17:45 UTC

Newcastle upon Tyne Surface Water Model (Input from UKMO NIMROD) 28-Jun-2012 17:50 UTC

Newcastle upon Tyne Surface Water Model (Input from UKMO NIMROD) 28-Jun-2012 17:55 UTC

Modelling versus reality

Computational performance

- Simulation times for **3 hours** from start of the event
- 31km² area of central Newcastle
- Resolutions of **2m or better** are preferable

Resolution (cells)	1 x NVIDIA M2075 Released 2010		1 x NVIDIA K20 Released 2012	
4m (1,958,484)	00:45:21		00:31:18	0.69x
2m (7,833,169)	05:12:05	6.88x		

- Halve resolution, increase run-time approx. eight-fold
- Need to split work across multiple devices

- Wave propagation 1 cell / timestep
- Row synchronisation limited by half overlap

• Wave propagation 1 cell /
timestep
• Row synchronisation
limited by half overlap

$$\Delta t_{D1} = \min\left(\frac{\Delta x}{u + \sqrt{gh}}, \frac{\Delta y}{v + \sqrt{gh}}\right)$$

$$\Delta t = \min\left(\Delta t_{D1}, \Delta t_{D2}\right)$$

• Wave propagation 1 cell /
timestep
• Row synchronisation
limited by half overlap

$$\Delta t_{D1} = \min\left(\frac{\Delta x}{u + \sqrt{gh}}, \frac{\Delta y}{v + \sqrt{gh}}\right)$$
• Can be overcome by
forecasting likely
timesteps
• Can be overcome by
forecasting likely
timesteps
• May require reversing a
simulation

Computational performance

- Domain decomposed across four devices
- Current servers are limited to **eight** PCI-e x16 slots
- Explicit timestep synchronisation or domain-independent timesteps
- Best performance scaling on large domains (ratio of sync:work)

Synchronisation	Overlap Resolution (cells)		Devices	Devices NVIDIA Tesla M2075		
None	N/A	2m (7,833,169)	1 x	05:12:05	1.00x	
Every 1 iteration	10 cells	2m (8,035,336)	4 x	01:41:11	/3.08	
Every 50 iterations	50 cells	2m (8,805,496)	4 x	01:28:31	/3.52	

Computational performance

- Domain decomposed across four devices
- Current servers are limited to **eight** PCI-e x16 slots
- Explicit timestep synchronisation or domain-independent timesteps
- Best performance scaling on large domains (ratio of sync:work)

Synchronisation	Overlap	Resolution (cells)	Devices	evices NVIDIA Tesla M2075	
None	N/A	2m (7,833,169)	1 x	05:12:05	1.00x
Every 1 iteration	10 cells	2m (8,035,336)	4 x	01:41:11	/3.08
Every 50 iterations	50 cells	2m (8,805,496)	4 x	01:28:31	/3.52

Independent domains only synchronise every 3 seconds

Conclusions

- Supercomputer hydraulics feasible
 - Potentially costly
 - Need software rewrite
- Run-times will decrease for multi-core/heterogeneous softwares
- Work division is challenging
 - Scaling vs. overheads
 - Minimising communication
 - Forecasting timesteps

