

Benefits of Dual Polarization in severe storms

CONTENTS

- 1. Background
- 2. Raw Gauge Radar comparison
- 3. Phi-DP base attenuation correction
- 4. Texture of Phi-DP clutter removal
- 5. Conclusions

Case Study

 At C-Band attenuation is a problem in heavy rain – More so at X-band

 We will look at London 20th July 2007 case which caused widespread flooding

الروب البليج البير أأسليون بمللي في أن واللوالي أن ما وبال

 Thanks to Rob Thompson at Reading University for plots

Background characteristics of microwave weather radars

Higher frequency: more severe Attenuation during critical events

Ga

From Delrieu et al, 2000: Quantification of Path-Integrated Attenuation for Xband and C-band Weather Radar Systems Operating in the Mediterranean Heavy Rainfall

FIG. 3. Some examples of k-R relationships established using Mie theory (spherical rain drops) for the K- (0.86 cm), Ka- (1.15 cm), X- (3.2 cm), C- (5.6 cm), and S-band (10 cm) wavelengths and the Cévennes DSD model (see Table 1) for raindrop temperatures $T = 0^{\circ}$ C (dotted line), $T = 10^{\circ}$ C (continuous line), and $T = 20^{\circ}$ C (dashed line).

Gauge vs. Radar

- Uses Z=200R^{1.6}
- Almost all gauges were under estimated
 - Rain >10mm/hr mean30% of gauge
- We will look at why we have this problem
- Slow moving (~23km/hr) so effects of winds and interpolation are small

Thurnham ϕ_{DP} at 1043

Attenuation Correction with $\Phi_{\rm DP}$

- Attenuation increases with Φ_{DP} so that $\Delta Z_H = \alpha \Phi_{DP}$
- vary α based on drop spectra, shapes and temperature.
- These values of α are generally around 0.1dB/° in heavy rain
 - So must add 1dBZ for every 10° of differential phase

- Have Φ_{nn} =300° ~ 30dB ± ?dB of attenuation

- Radar data corrected for attenuation using 10°/dB
- Attenuation correction clearly has massively improved the situation
 - Rain >10mm/hr
 - inside 80km

• 98%

- Still some big outliers
 - Vertical Structure related?
 - Clutter Related?

5

- Spurious echoes can be from ground, vegetation, buildings, planes, sea, boats, insects/birds...etc.
- Some are more easily identifiable than others.
- Dual polarisation can greatly help in the identification of spurious echoes.

Using texture

• The huge phase shifts mean that texture of $\Phi_{\rm DP}$ (9pts or along ray) rejected rain as clutter.

Effects of Vertical structure

- "Bright-band" where ice melting to water (0° C)
- Flat below bright band
- -3 dB/km above bright band.
- Not accounted for in the is case – usually dealt with in Radarnet VPR code

Vertical Profile

Rob Thompson

- Vertical profiles taken from beams 0-5 close range
- Falls off strongly • above 2000m
- Beams above this will • underestimate rain.
- 0.8° beam at 95km is • 2km high and 2km broad.

Summary

- Attenuation of the radar beam is more important at X-Band
- Dual polarisation technology offer some scope to identify and correct for this effect.
- Algorithm using dual polarisation attenuation correction are limited – heavy rain can cause total loss of the signal at which point correction will not be possible.
- Data clean-up is important and can be difficult even with Dual-pol. technology

ال و الليه الي أن التوريماليو. أن و التواجب أن و

Questions and answers

