



### PhD Progress Report

Susana Ochoa





### **UK pilot locations**

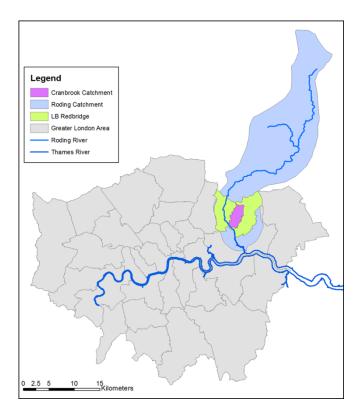
- Cranbrook (London Borough of Redbridge)
- Purley (London Borough of Croydon)
- Torquay City Centre (Torbay, Devon)







# Cranbrook Catchment, London Borough of Redbridge

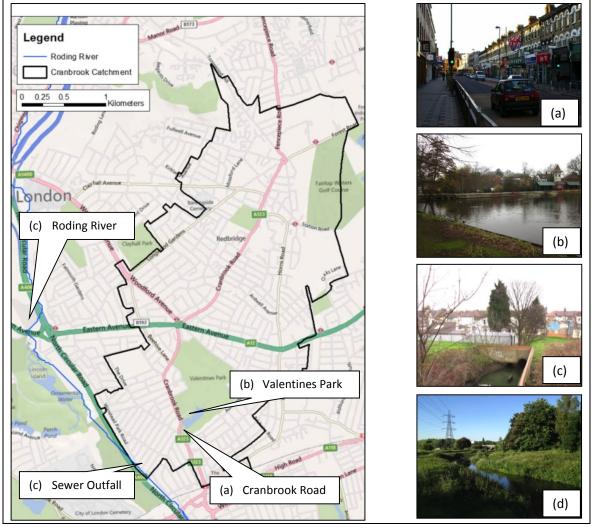



## 1. Location and Environmental Setting

• Area: aprox. 900 ha

Cran Brook: 5.75km (5.69km culverted)

- Predominantly urban catchment
- Sub-catchment of Roding River catchment
- Has experienced severe fluvial and surface flooding in the past. Several flood events reported since 1926, most recent events in October 2000 and February 2009

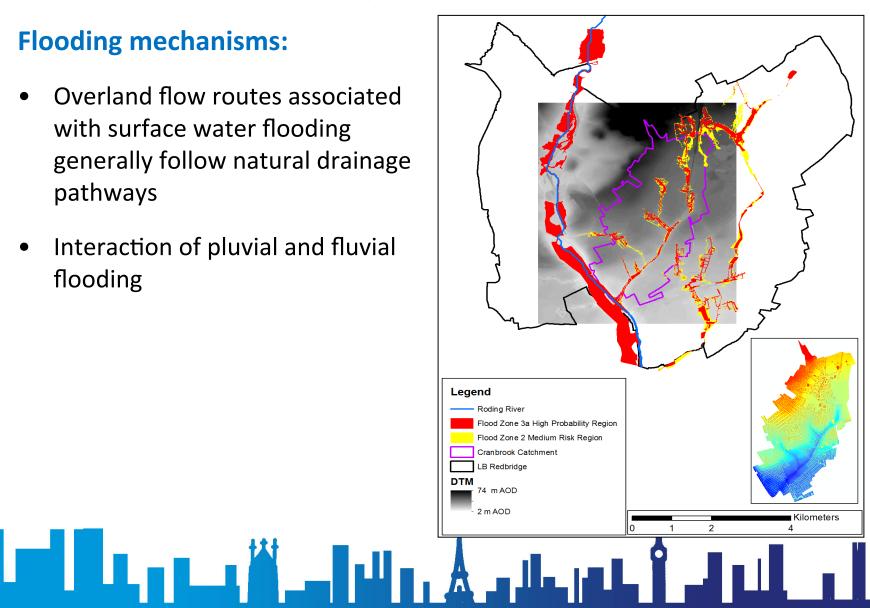







#### 1. Location and Environmental Setting









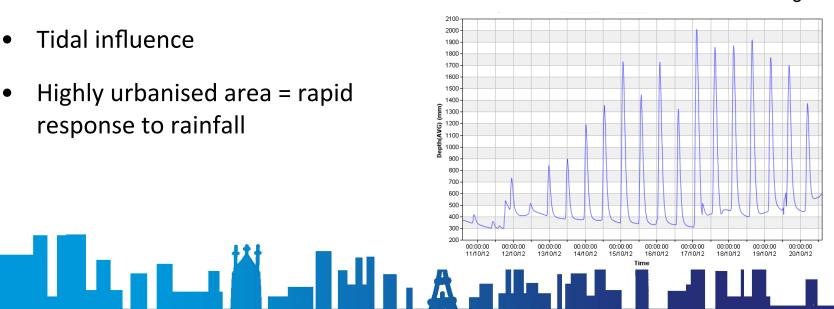

#### Flooding mechanisms:

- Overland flow routes associated with surface water flooding generally follow natural drainage pathways
- Interaction of pluvial and fluvial flooding








Sewer outfall

#### Flooding mechanisms:

- Overland flow routes associated with surface water flooding generally follow natural drainage pathways
- Interaction of pluvial and fluvial flooding
- Tidal influence
- Highly urbanised area = rapid response to rainfall



Roding River







#### Properties at risk of surface water flooding

(for a 1% AEP rainfall event)

| Type of property        | Infrastructure (PPS25 Categories)* |                      |                    | Households |                   | Commercial Properties |                   |
|-------------------------|------------------------------------|----------------------|--------------------|------------|-------------------|-----------------------|-------------------|
|                         | Essential                          | Highly<br>Vulnerable | More<br>Vulnerable | All        | Basements<br>Only | All                   | Basements<br>Only |
| Flood depth > 0.03 m**  | 2                                  | 2                    | 10                 | 1896       | 120               | 251                   | 16                |
| Flood depth > 0.50 m*** | 2                                  | 1                    | 1                  | 266        | 0                 | 23                    | 0                 |

- Essential infrastructure includes essential transport and utility infrastructure
- **Highly vulnerable infrastructure** includes police, ambulance and fire stations and command centres, in addition to basement dwellings, caravans, emergency dispersal points and installations requiring hazardous substances consent
- More vulnerable infrastructure comprises hospitals, residential care homes, students halls of residence, hotels, drinking establishments, amongst others.







#### Impacts of flooding in the Cranbrook catchment

- Damage to residential properties, business and open spaces
  - = thousands £££ of damage + social impacts
- Flood water combined with sewage when surcharging occurs has led to environmental damage.
- Roads have been inundated, causing severe disruption to transport







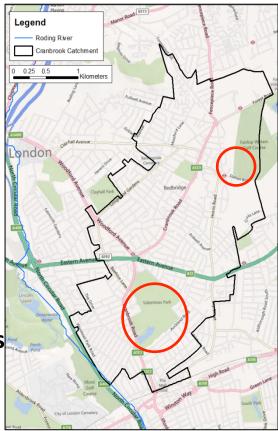
#### Historical flood events in the Cranbrook catchment

- 30/31st Oct 2000:
  - Heavy rainfall + high water levels in Roding River
  - Very wet October October rainfall: Tr = 1:134 yrs
  - Individual storm event: Tr = 1:4 yrs
  - Approx. 100 houses flooded + main roads
- 9th February 2009:
  - Heavy rainfall -> Snowmelt -> Increase in water levels in Roding River
    - = Coincidental fluvial & pluvial flooding
- Multiple localised surface water flood events in recent years: June 2006, July 2006, January 2012







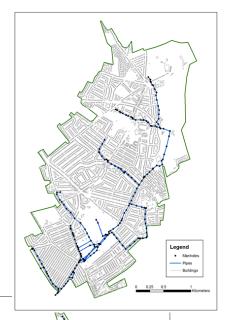


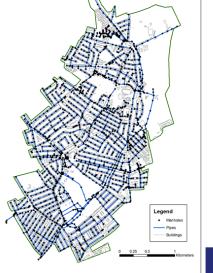



#### **Potential SWFR mitigation alternatives**

- 1. Storage at Fairlop Gravel Extraction Site, including day-lighting of a portion of the Cran Brook and remediation of the current extraction site
- 2. Increase storage potential at Valentine's Park:
  - Increasing weir level at downstream end of park lake
  - Restoration of open channel section and surrounding floodplain area
  - Reduce peak points currently diverted around lake
- 3. Local property resistance and resilience measures for residual risk: £1k-£5k for houses, £3k-£10k for commercial properties








#### **Sewer system:** 2 models - simplified and complete

|                                                               | Simplified Model                                            | Complete Model |  |
|---------------------------------------------------------------|-------------------------------------------------------------|----------------|--|
| Total contributing area (ha)                                  | 845.6590                                                    | 865.2000       |  |
| Number of nodes                                               | 242                                                         | 1776           |  |
| Number of pipes                                               | 270                                                         | 1816           |  |
| Total pipe length (km)                                        | 15.8944                                                     | 98.0458        |  |
| Number of subcatchments                                       | 51                                                          | 1765           |  |
| Max subcatchment size (ha)                                    | 61.5740                                                     | 11.5400        |  |
| Min subcatchment size (ha)                                    | 1.1620                                                      | 0.0030         |  |
| Mean subcatchment size (ha)                                   | 16.5815                                                     | 0.4902         |  |
| Standard Deviation of subcatchment size (ha)                  | 13.1768                                                     | 0.7072         |  |
| Rainfall-runoff model                                         | Fixed for impervious surfaces / NewUK for pervious surfaces |                |  |
| Length of longest path to critical point or final outfall (m) | 5.0158                                                      | 6.1042         |  |
| Time of concentration (min)                                   | 56                                                          | 70             |  |
|                                                               |                                                             |                |  |

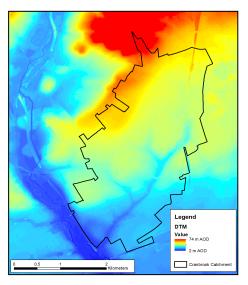


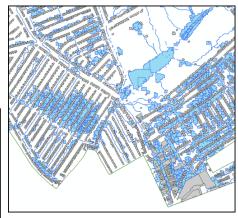






#### DTM:


- 1 m horizontal resolution LiDAR-generated DTM (2010)
- Stated vertical accuracy of  $\pm 0.15$  m and horizontal accuracy smaller than the pixel size
- Composite generated by merging data from different, overlapping surveys, at different resolutions

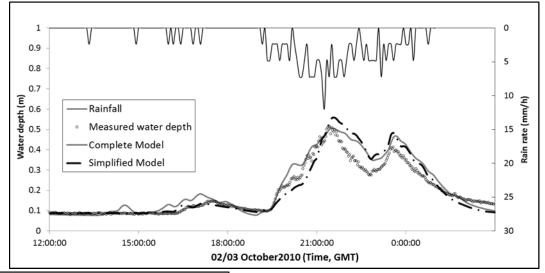

#### **Surface models:**

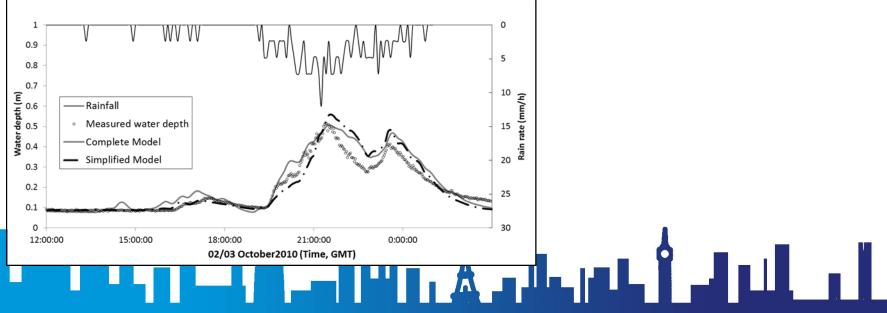
 1D: set of storage nodes (ponding locations) + open channels (overland pathways)

2D: triangular mesh

Hybrid: 1D/2D








#### **Dual-drainage models**

- 1D-1D, 1D-2D
- Calibration









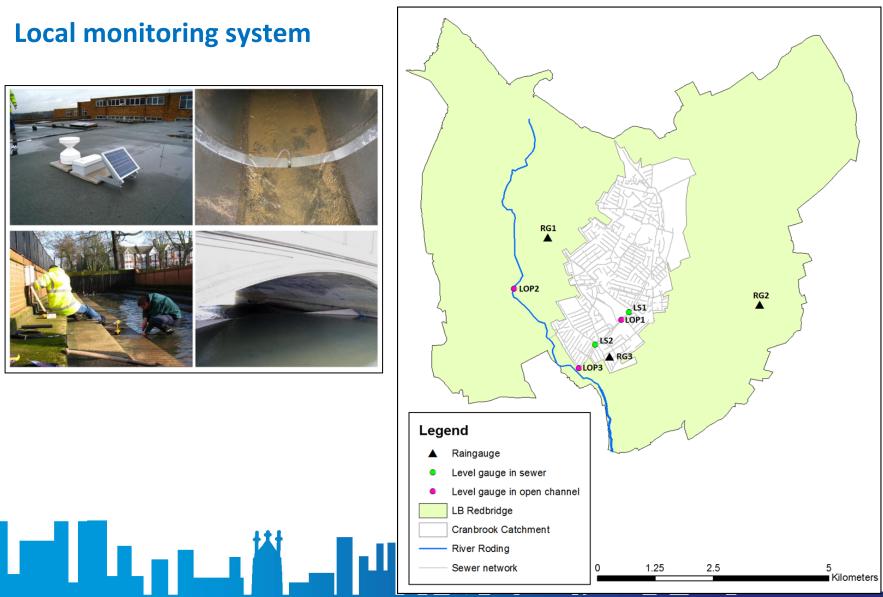
#### **Local monitoring system**

3 tipping bucket rain gauges

With 1 min data "sampling"

- 2 pressure sensor for monitoring water levels in the Roding River Real time frequency: 5/10 min
- 2 sensors for water depth measurement in sewers
   Real time frequency: 5/10 min.
- 1 sensors for water depth measurement in open channels

Sampling frequency: 5/10 min


All sensors are equipped with data acquisition and real-time access wireless communication units



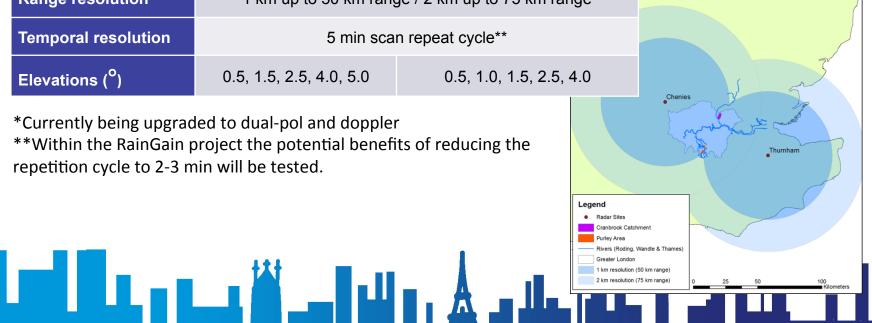


#### **Local monitoring system**



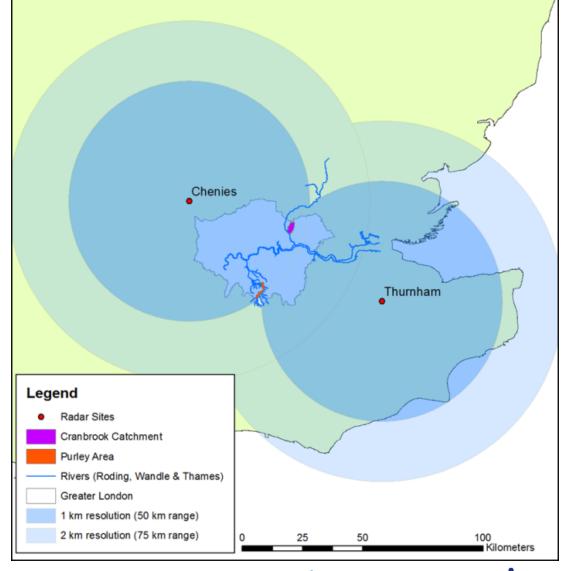







#### **UKMO C-band Radars:**

|                             | Chenies                                         | Thurnham                |  |  |  |
|-----------------------------|-------------------------------------------------|-------------------------|--|--|--|
| Radar type                  | C-band                                          | C-band                  |  |  |  |
| Polarisation                | Single-polarisation*                            | Dual-polarisation       |  |  |  |
| Doppler (yes/no)            | No*                                             | Yes                     |  |  |  |
| Antenna                     | Parabolic 3.6 m diameter, 43 dB gain            |                         |  |  |  |
| Beamwidth                   | 1°                                              |                         |  |  |  |
| Frequency range             | 5.4 – 5.8 GHz                                   |                         |  |  |  |
| Range resolution            | 1 km up to 50 km range / 2 km up to 75 km range |                         |  |  |  |
| Temporal resolution         | 5 min scan repeat cycle**                       |                         |  |  |  |
| Elevations ( <sup>o</sup> ) | 0.5, 1.5, 2.5, 4.0, 5.0                         | 0.5, 1.0, 1.5, 2.5, 4.0 |  |  |  |


<sup>\*</sup>Currently being upgraded to dual-pol and doppler

<sup>\*\*</sup>Within the RainGain project the potential benefits of reducing the repetition cycle to 2-3 min will be tested.









