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ABSTRACT 

Rainfall data from operational radar or rain gauge networks is generally not available at a resolution smaller than 1km2. 
Due to short lead times and high percentage of impervious area, the spatial variability of rainfall becomes important 
when simulating flow and runoff in smaller urban catchments. In the UK there is a growing interest in modelling rainfall 
runoff and flooding processes at scales much smaller then 1km2. As high density rainfall data are scarce, statistical 
downscaling techniques are sometimes used to spatially downscale radar or rain gauge data, in order to include the ef-
fects of small scale rainfall variability. These downscaling techniques are, however, generally not verified against high 
resolution rainfall data measured on the ground. This paper describes a study where operational UK radar data has been 
downscaled to areas between 10 and 100 m, and compared with data from a network of 16 tipping bucket raingauges 
located in an urban area < 1km2. 
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1 INTRODUCTION 
A correct combination of spatial and temporal resolution of rainfall input and resolution of modelled runoff 
surfaces is important for creating meaningful urban drainage and urban flooding models. Urban areas exhibit 
large spatial heterogeneities (Villarini et al., 2010). Research described in Schellart et al. (2012) compared 
simulated sewer flows using either C-band radar or tipping bucket rain gauge data with measured flows in a 
combined sewer system in the UK. The results indicated that four rain gauges situated in a 11km2 area could 
miss local heavy rainfall peaks, but that 1km2 resolution radar data occasionally contained considerable local 
errors in rainfall intensity. Neither rainfall measurement method proved accurate enough to simulate flow 
peaks occurring in the system, whereas it is the peak flows that are important for simulation or prediction of 
urban flooding and combined sewer spills. When processing radar data, the rainfall estimate is commonly 
calibrated by reference to rain gauge data. However, in instances where rainfall is highly spatially varied the 
use of a limited number of rain gauge measurements may be unrepresentative of the wider area (e.g. Ciach 
and Krajewski, 2006). Ciach and Krajewski (2006) describe the importance of gathering empirical evidence 
of small-scale spatial variability of rainfall for the validation of mathematical models that describe rainfall at 
different spatio-temporal scales, and the lack of rain gauge networks with inter-gauge distances less than 3-4 
km. Limited research in non-urban surroundings in Europe has highlighted how spatially varied rainfall can 
be on a sub-kilometre scale. For example, Pedersen et al. (2010) describe two experiments placing 9 rain 
gauges on a 500x500m area in Denmark. They found the intra-event variability between individual rain 
gauge depth and mean event depth ranging between 1 – 26%.  
UK Water industry papers and reports, e.g. FWR (2004) describes how detailed data and models are needed 
for urban rainfall run-off and flood modelling. For modelling what happens on street scales, 5 ha catchment 
subdivisions and 2-minute intervals have been found to be useful. However, none of the UK operational 
rainfall radar and rain gauge networks currently supplies rainfall data at a resolution high enough to warrant 
urban rainfall runoff modelling at 5ha subdivisions. More research is therefore needed on high resolution 
rainfall data in urban areas, and finding the optimum level of detail for both rainfall data or modelled rain-
fall, and urban run-off models. Statistical downscaling could be a useful tool to generate street-scale rainfall 
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estimates based upon operational radar rainfall data (Wang et al., 2010) and to further improve the perfor-
mance of the meso-scale rainfall nowcasting system in urban rainfall prediction (Liu, 2012). However, the 
correctness of downscaled radar rainfall estimates is usually unknown and the validation is not straightfor-
ward due to the lack of street-scale rainfall measurements. In addition, there is an inherent difference be-
tween radar and raingauge measurements in representing precipitation; the prior indicates an areal average 
of rainfall rates, whilst the latter represents point information. The validation therefore has to depend on the 
comparison of the subsequent hydrological outputs resulting from downscaled rainfall inputs (Gires et 
al.,2012). The rainfall-runoff process however will introduce additional uncertainty and cannot truly reflect 
the spatial variations in downscaled rainfall estimates.  

2 METHODOLOGY 

2.1 A very dense network of 16 rain gauges within a 1 km2 radar pixel 
The existing research on very high resolution ground rain gauge networks has been mainly carried out in 
non-urban areas. One problem in urban areas is finding safe and good locations for rain gauges, i.e. at a dis-
tance of twice the height away from any obstacles such as building and trees and not too close to the edge of 
flat roofs. A high density rain gauge network has therefore been installed at the University of Bradford cam-
pus, near the city centre of Bradford, UK. This network currently consists of 16 tipping bucket rain gauges, 
collocated in 8 pairs. The rain gauges have all been sited on flat roofs, or on railings at the edge of flat roofs, 
at locations as close as possible to the ‘ideal’ requirement for rain gauge siting. The distances between the 
pairs range between 40 m and 400 m approximately, and all rain gauges pairs are located in a single 1km2 
radar pixel of the UK Met Office operational network of C-Band radars (Nimrod). The locations of rain 
gauges and the coincidental 1 km2 radar pixel are shown in Figure 1 (A).  

2.2 Scaling and interpolation 
A multiscale mapping model proposed by Cheng (2005, 2008) is employed here to generate downscaled ra-
dar rainfall rates at the coincidental location of the rain gauge network. This model combines two types of 
information that are largely used to characterise geo-data; they are spatial dependence and singularity. The 
idea of the prior is to associate the variability of data values with the distances seperating them. This infor-
mation can be further used to predict (or interpolate) the values at the unknown locations by linearly com-
bining the known values (or measurements) nearby (e.g. the Kriging or IDW interpolation), which can be 
espressed as follows: 
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where c(x0) and c(xi) are data values respectively at locations x0 and xi, and λi(∙) is the to-be-determined 
weighting, which is a function of the distance between x0 and xi, denoted d(xi, x0). However, in the process 
of interpolation, the singularity of values could be smoothed off in order to obtain more robust spatial asso-
ciation, and consequently some valuable information of local variability is removed. The singularity, in the 
conext of multifractals, is an index used to characterise the variation of statistical behaviour of data values 
as the measureing scale changes. The removal of singularity could be critical for small-scale applications 
(e.g. urban flood modelling) because the distribution of singularities is usually consistent with the distribu-
tion of the anomalies of singular physical processes (e.g. flooding and rainfall) that result in anomalous 
amounts of energy releases at a fine (spatial and temporal) scale (Cheng, 2008; Malamud et al., 1996; 
Schertzer and Lovejoy, 1987).  
A general form of geo-data values, taking into account singularity, can be therefore expressed as follows 
(Cheng et al., 1994): 

EcZ −= )()(),( xxx αεε ,  (2) 

where c(x) is a constant data value at locations x (the same as the c(x) in Eq. (1)) and is invariant as measur-
ing scale ε changes; α(x) is the singularity index and E is the Euclinean dimension (E = 2 for plane data). 
When data values do not show singularity, α(x) is equal to E, and consequently the average of data values 
within the ε × ε area retains the same as scale changes (i.e. Z(x, ε) = c(x)). By rearranging Eq. (2) and substi-
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tuting it into Eq. (1), a more general interpolation relation between the unknown value at location x0 and its 
neighbourhood values can be obtained: 
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where α(x0) and α(xi) are respectively the singularity indices at locations x0 and xi.  

2.3 Spatial rainfall downscaling 
This integrated interpolation relation (Eq. (3)) can be further used to generate downscaled radar rainfall 
rates which are comparable to the coincidental raingauge data. The weighting λi for conducting interpolation 
can be determined according to the distances between the centre x0 of rain gauge network and the surround-
ing radar pixels at locations xi’s (see the triangular and squared markers in Figure 1(B)). Here, the simple 
IDW (inverse distance weighting) interpolation technique with power parameter equal to 2 was employed 
and in total 81 (i.e. 9 × 9) surrounding 1 km2 radar pixels at locations xi’s were used. It is worth to clarify 
here that the interpolated radar rainfall estimates represent the mean rainfall rates over a 1 km2 grid square, 
rather than the point rainfall rates.  
The singularity indices at a given location can be estimated using Eq. (2). The mean rainfall rates within the 
boxes with variable sidelengthes ε’s (numbered by 1-4 in Figure 1(A) and 1-3 in (B)) are firstly computed. 
The logarithms of these rates and the associated sidelengthes are then compared. If a well linear relation can 
be observed, that means the scaling is followed and the singularity α(x) of the dataset can be derived. Here, 
α(x0) and α(xi) were respectively computed using radar (scales ranging from 1 to 9 km) and rain gauge 
(scales ranging from 100 to 700m) rainfall values, where the mean rainfall rates of rain gauge network with-
in the box with a given sidelength were estimated by averaging the rain gauge data within that box. 
Based upon the information obtained above together with Eq. (3), the radar rainfall estimates at the centre of 
rain gauge network with various spatial scales can be computed. 
 

 
Figure 1 – Illustrations showing (A) the location setting of multi-sensor network, where the round markers represent rain 
gauges, the square marker is the centre of the co-located radar pixel and the triangular marker is the geometric centre of 

raingauge network; (B) the neighbourhood radar pixels (the squared markers are the centres of each pixel).  

 

3 RESULTS 
The rain gauge network in Bradford has been operational since April 2012, and up until the 21st August 
2012 between 527mm and 585mm precipitation has been recorded. Table I provides information on the 
events studied and shows the range of variations in event cumulative rainfall over the campus area as rec-
orded by the raingauges. Except for the event of 22nd June, the radar underestimates the rainfall recorded by 
the rain gauges. For the small high intensity rainfall event on the 21st of June, the radar did not record any 
rainfall at all. The downscaling was therefore only carried out for the 22nd June, 6th July and 15th August. 
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Table I – Details of events studied for 16 rain gauges, single radar pixel overlying campus and 81 radar pixels. 

 21 Jun 22 Jun  6 Jul  7 Jul 15 Aug 
Approx event duration  20 mins 24 hrs 10 hrs 25 mins 3 hrs 
RGs range cum. depths (mm) 5.5 – 8.5 36.5 - 49.4 32.3 - 38.0 11.8 – 13.1 15.2 - 17.6  
Overlying pixel cum. depth (mm) 0 37.7 18.9 0.7 5.8 
81 pixels cum. depths range (mm) 0 – 0.2 34.6 – 62.2 15.9 – 28.3 0.1 – 1.6 5.0 – 9.9 

 
Figure 2 shows an example of the cumulative rainfall recorded by the 16 rain gauges, as well as the 1km2 
radar pixel overlying the rain gauge network and downscaled radar data for the event of 6th July 2012. The 
paired rain gauges generally show very similar rainfall except for raingauges 18 and 17 which means one of 
these two raingauges could have suffered a temporary blockage or other random error. Filtering out these 
random errors will be a subject of further study. The original radar data (the dark dotted line) largely under-
estimes the rainfall recorded by the raingauges and can be slightly improved by interpolating the radar data 
at neighbourhood pixels to the centre of rain gauges (the grey dotted line); however, the interpolated radar 
estimates follow a very similar pattern to the original radar data This means that without taking into account 
local singularity the interpolated estimates still produce rainfall values that are smoothed over the 1 km2 ra-
dar grid square. By introducing the local singularity and consequently downscaling the interpolated 1-km 
rainfall rates, the patterns of cumulative rainfall become more variable; for example, at time points 12:50 
and 14:45, the cumulative radar rainfall values significantly increase due to the strong singularities in the ra-
dar and raingauge data. Similarly, it can be observed in Figure 3 that at the time point 06:35 and the period 
of 12:30 – 13:30 the cumulative radar rainfall largely increases because of local singularites.  
However, it can be found that the singularities cause discontinuity to the cumulative rainfall estimates; this 
could be because of the assumption that the scaling features of radar (i.e. 1 – 9 km) and rain gauge data (100 
– 700 m) are comparable. In other words, the scaling beaks that may exist between two investigated scale 
ranges (i.e. 1 – 9 km for radar and 100 – 700 m for rain gauge data) were neglected in this paper.  

4 CONCLUSIONS 
The rainfall events measured over the campus exhibited significant spatial variation, between approximately 
3mm and 10mm difference in event cumulative rainfall over distances < 400 m. In 4 out of 5 events studied 
the radar underestimated the rainfall significantly. This could partially be down to the radar ‘smoothing’ the 
rainfall over an area of 1km2, although it does not explain all the underestimation of the radar, it is likely 
that other radar errors remained after the UK Met Office’s quality control efforts. Downscaling of C-band 
radar data or high resolution rainfall measurements is likely to be necessary as input to local urban rainfall 
runoff and flood modelling, to prevent underestimation of the flows due to underestimation of the rainfall. 
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Figure 2 – Rainfall measured by the 16 rain gauges and the 1km2 radar pixel overlying the campus and downscaled rain-

fall data, 6th July 2012. 

 
Figure 3 – Rainfall measured by the 16 rain gauges and the 1km2 radar pixel overlying the campus and downscaled rain-

fall data, 22nd June 2012. 
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