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ABSTRACT 

Kriging interpolation is largely used in geostatistics to characterise the spatial structure of data and it is established in 
general based upon the stationary or intrinsic assumptions; however, the consequence of this second-order approxima-
tion is that the local singularities (or extremes) could be smoothed off. This drawback could be magnified as a finer-
scale phenomenon is being investigated, such as urban rainfall. Unlike Kriging, the theory multifractals provides a more 
complete description of the structure of data by considering a range of orders of statistical moments. This work demon-
strates the link between multifractal analysis and the Kriging interpolation and finds that Kriging uses only part of in-
formation that is included in multifractals. This causes the loss of local singularity of Kriged rainfall field and could be 
improved by combining it with singularity analysis. A possible solution is proposed in this work and will be implement-
ed and presented in the workshop. 
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1 INTRODUCTION 
Raingauges remain the most reliable sensors providing direct and accurate point rainfall measurements over 
the ground surface, which are widely used as “ground truth”. The major drawback of raingauge data lies in 
its limited ability to characterise the spatial variation in rainfall. Radar sensors have been widely used to 
compensate for this drawback, providing high-resolution spatial and temporal rainfall information; however, 
not every country or city is able to afford radar. Many studies have therefore been conducted, aiming to syn-
thesise the spatial structures of rainfall from point raingauge information using interpolation methods (Tabi-
os et al., 1985; Syed et al., 2003; Looper and Vieux, 2011).  
The general idea of interpolation methods is to predict unknown values from data observed at known loca-
tions and most of the existing methods are implemented based upon the assumption that each unknown val-
ue is a linear combination of known data. The weighing of the linear combination is in general determined 
according to the spatial association that widely-observed in geo-data, such as rainfall (Oliver and Webster, 
1990). Kriging is one of the most largely-used interpolation methods because it produces unbiased (the mean 
of error is zero) and optimal prediction (the variance of the errors is minimised). Due to these features, 
Kriging methods are a very popular tool to generate (or predict) spatial estimates from point (or raingauge) 
rainfall records and consequently provide comparable information that can be further used, for example, to 
combine with radar or satellite rainfall observations (Todini, 2001; Wang et al., 2012). 
However, Kriging methods usually assume that the rainfall fields are Gaussian variables. That means both 
that the marginal distribution of rainfall at a point is normally distributed, and that the spatial structure of 
rainfall is well captured by its second-order properties in a covariance matrix. The first assumption is how-
ever a poor representation of the distribution of rainfall depths (Wilson et al., 1991), while the second is 
questionable in view of the scaling properties of rainfall depths (Cheng, 2005).  
For non-Gaussian-distributed random fields (such as high-resolution, small-scale rainfall fields over urban 
catchments), Kriging methods may not be able to interpolate (or predict) rainfall details reliably. Multifrac-
tals provide a promising framework to describe highly non-linear processes through scaling analyses, and it 
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has proven to be a useful tool to analyse non-Gaussian random fields (Schertzer and Lovejoy, 1987; Lovejoy 
and Schertzer, 1990; Deidda et al., 1999).  
This work employs the theory of Multifractals to study the key technique –semi-variogram– that is used in 
the Kriging interpolation. By analysing the relation between variograms and the multifractals, the suitability 
of using Kriging interpolation techniques for urban rainfall generation will be preliminarily assessed. The 
possible improvement will be then proposed, implemented and presented in the workshop. 

2 METHODOLOGY 

2.1 Data set 
Composite radar images (with 1 km and 5 min resolutions) of an event (identified as a convective storm) 
crossing Greater London area on 26th May 2011were used in this analysis. These data are produced by the 
UK Met Office Nimrod system and under routine quality-control processes (Golding, 1998; Harrison et al., 
2009). The image of a 40 km x 40 km snapshot at 15.25 (GMT) of this event is shown in Figure 2 (a). 

2.2 Variograms and Multifractals  
Semi-variogram (or variogram) is a useful to represent the spatial association of geo-data. It shows the dis-
similarity between two values at different locations separating by the distance h and can be defined as (Mar-
garet, 1998): 

)]()([5.0)( xx ZhZVarh −+=γ .   (1) 

This equation can be further simplified, if the assumptions of stationary or intrinsic are applied, as 

 ])}()([{5.0)( 2xx ZhZEh −+=γ ,   (2) 

where Var[.] and E[.] respectively represent the variance and expectation operators, and Z(x) is a random 
variable (or rainfall data) at the location x. The variogram models that are commonly used to fit the experi-
mental (or raw) variograms include spherical, exponential and Gaussian models (Margaret, 1998; Chilès and 
Delfiner, 2012). To link the variogram to the multifractals, a relation was derived by Cheng and Agterberg 
(1996), expressed as: 
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where ε is the (spatial) measuring scale of data (i.e. sidelength of radar grid in this work); k is equal to the 
h/ε; τ(q) is the Legendre transform of multifractal spectrum f(α) and τ(2) is related to the second-order statis-
tical moment (or variance) of data; and c is a to-be-determined coefficient that can be obtained by fitting to 
experimental (or raw) variograms. Eq. (3) (denoted MF variogram model in the following context) demon-
strates that, as compared to the multifractals which uses the τ(q) curve over a range of q to characterise the 
spatial structure of values, variograms use only the τ(2) feature (i.e. second-order property) to characterise 
spatial values. In addition, from the MF model, it can be seen that variogram can be a function of measuring 
scale ε; if c is determined at a certain scale (e.g. 4-km), in theory the variograms at other scales (e.g. 2-, 1-
km and 500-m) could be estimated (see Figure 1 (right) as an example). 
The widely-used Gaussian variogram model is employed here to compare with the MF variogram model: 

)1()(
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where p is the used to represent nugget effect (i.e. the discontinuity close to origin), and ω is the limit of a 
variogram called sill at the distance a (called range). Table I gives the estimates of Gaussian and MF vario-
gram models for 26/05/2011 15.25 radar image at 1-km spatial scale. It can be seen in Figure 1 that, unlike 
the Gaussian model which show quadratic (highly continuous) behaviour in the vicinity of the origin, the 
MF variogram model show relatively linear behaviour within the short distance, which is similar to the 
spherical and exponential models. 
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Table I – Estimates of Gaussian and MF semi-variogram parameter values for the ra-
dar rainfall image at 15.25 (GMT) on 26/05/2011 

Gaussian 
Nugget (p) Sill (ω) Range (a) 

0.162 8.866 3889.28 

MF 
Constant (C) τ(2) Scale (ε) 

58.85 0.804 1000.0 

 

2.3 Kriging interpolation 
Based upon the MF variogram shown in Figure 1, the Kriged rainfall field of the radar image 26/05/2011 
15.25 can be obtained and shown in Figure 2 (b). It can be seen that in general Kriging interpolation well 
synthesise the shape of storm, but relatively smooth and symmetric. From the statistics of these images, it 
can be found although the mean rainfall rates over whole image is preserved, the rainfall maximum is under-
estimated and the overall spatial structure (i.e. standard deviation, Std) is smoothed off. This demonstrates 
the deficiency of using second-order statistical properties only to approximate (or to Krig) rainfall struc-
tures.  
 

 
Figure 1 – Experimental (raw) variograms and the associated variogram models: (left) the raw variogram (the 

round markers) of the radar image measured at 15.25 GMT on 26/05/2011and the associated Gaussian (the grey 
dashed line) and MF (the dark solid line) variogram models; (right) the raw variogram (the round markers) of the 
15.10 radar image at different scales (4-, 2- and 1-km) and the estimated 2-, 1-km and 500-m MF models which 

are fitted using 4-km data. 

 

   
 

Figure 2 – A snapshot of (a) radar measurements at 15.25 GMT for the 
26/05/2011 event crossing Greater London area, and (b) the associated Kriged 

rainfall field using MF variogram model 
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2.4 Singularity 
The singularity, in the context of multifractals, is an index used to characterise the variation of statistical be-
haviour of data values as the measuring scale changes. The removal of singularity could be critical for small-
scale applications (e.g. urban flood modelling) because the distribution of singularities is usually consistent 
with the distribution of the anomalies of singular physical processes (e.g. rainfall) that result in anomalous 
amounts of energy releases at a fine (spatial and temporal) scale (Schertzer and Lovejoy, 1987). However, in 
the process of (Kriging) interpolation, the singularity of data could be smoothed off in order to obtain more 
robust spatial association, and consequently some valuable information of local variability is removed. 
In order to take into account the singularity that could be smoothed off by the interpolation process, a more 
general form of data values proposed by Cheng et al. (1994) is employed here, i.e., 

EcZ −= )()(),( xxx αεε ,  (5) 

where c(x) is a constant data value at locations x and is invariant as measuring scale ε changes; α(x) is the 
singularity index and E is the Euclidean dimension (E = 2 for plane data). If data values do not show singu-
larity, α(x) is equal to E, and consequently the average of data values within the ε × ε area retains the same 
as scale changes (i.e. Z(x, ε) = c(x)). To implement this in rainfall images, the mean rainfall rates within the 
boxes with variable sidelengths ε’s (i.e. 1, 3, 5, 7, 9 km in this work) are firstly computed. The logarithms of 
these rates and the associated sidelengths are then compared. If a well linear relation can be observed, it 
means the scaling is followed and the singularity α(x) of the dataset can be derived.  
Figure 3 shows the mapping between the singularity values and radar rainfall rates and the mapping between 
the singularity values and the ratios of radar rainfall rates over Kriged rainfall estimates. It can be seen that 
the locations of rainfall peaks and the rainfall rates that are smoothed off by the Gaussian approximation are 
highly consistent with the occurrence of singularities. This demonstrates that the Kriging interpolation 
smoothens off the local singularity, which decreases its suitability for urban-scale applications; however, 
this also shows the potential to restore the local extremes that are smoothed off in the Kriged rainfall field 
by taking into account the singularity, and therefore the suitability of Kriging interpolation to urban-scale 
applications can be improved. 
 

   
Figure 3 – Gaussian and MF semi-variograms compared to empirical variogram estimated 

from radar observations 

3 CONCLUSIONS 
In this work, the key technique –semi-variogram– of Kriging interpolation that is analysed using multifrac-
tals. It can be found that whereas the multifractals characterises spatial rainfall data using a range of statistic 
moments, Kriging interpolation only uses part of the statistical moments (i.e. the second-order property, 
τ(2)) to approximate the complex structure of radar rainfall data. This may smooth off the local singularity 
values (or extremes), which are however critical for urban-scale hydrological applications. A new interpola-
tion form was proposed by Cheng (2005) to take into account local singularity, expressed as: 
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where α(x0) and α(xi) are respectively the singularity indices at location of interest x0 and the neighbourhood 
points xi; and λi is the weighing used to linearly combine the surrounding data, which is a function of the dis-
tance h between x0 and each neighbourhood point xi and can be derived from variogram. This new interpola-
tion form has shown the potential to improve the conventional Kriging interpolation in terms of the presence 
of local singularity. However, the scaling feature of variogram (demonstrated in Eq. (3) and Figure 1 
(right)), which will consequently affects the weighting in Eq. (6), was not considered in this new interpola-
tion form. This may not satisfactorily reflect the variation between spatial data as a finer-scale spatial struc-
ture is being explored. An improved version of Eq. (6), considering the scaling of variogram, will be imple-
mented and presented in the workshop. 
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