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ABSTRACT 

The reliability of urban flood modelling can be largely improved if high-accuracy and fine-resolution rainfall estimates 
are available; however, this requires a very dense network of rainfall sensors and is usually not available due to limited 
budget and space. Adjustment and downscaling techniques are largely used respectively to post process the radar and 
rain gauge data to obtain better rainfall estimates in terms of accuracy and resolution. However, the combined applica-
tion of these two types of techniques was seldom discussed in literatures, and its impact on the subsequent hydraulic 
modelling is unknown. This work implements a combined procedure of stochastic downscaling and gauge-based ad-
justment, aiming to evaluate its applicability to urban pluvial flood modelling. Unlike the adjustment process that re-
duces the rainfall input uncertainty (due to mean bias) through merging rainfall information from different sensors, the 
stochastic process of generating street-scale rainfall estimates actually causes additional uncertainty (due to spatial vari-
ability). This additional uncertainty will further propagate through hydraulic modelling and consequently affect the re-
liability of the resulting hydraulic outputs. The result of case study suggests that the uncertainty caused by the 
downscaling process could be larger than that reduced by the adjustment as the drainage area is very small. 
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1 INTRODUCTION 
The reliability of urban pluvial flood forecasting/modelling largely depends on the accuracy of rainfall inputs 
(Golding, 2009). The rainfall events that cause this type of flooding however are of small scale and high in-
tensity and consequently highly unpredictable. The applicability (in terms of accuracy and resolution) of op-
erational radar rainfall products is however insufficient for urban hydrological uses. For example, the current 
C-band radar network (operated by the UK Met Office) produces 5-min and 1-km radar data for whole UK 
area. This achievement has not yet fully satisfied the requirements for urban-scale pluvial flood modelling, 
which in general requires higher spatial- and temporal-resolution rainfall estimates/forecasts (e.g. 1-5 min 
and 100-500 m, as suggested by Fabry et al. (1994)). In addition, as compared to local rain gauge measure-
ments, substantial overestimates or underestimates of radar estimates are often observed over small-scale ur-
ban catchments (Liguori et al., 2011). 

In order to tackle these two shortcomings, gauge-based adjustment and stochastic downscaling techniques 
have been largely used to respectively improve the accuracy and the resolution of the operational rainfall es-
timates (Vieux and Bedient 2004; Wang et al., 2012a; Gires et al., 2012). The former focuses on reducing the 
rainfall volume bias between radar and the coincidental rain gauge measurements; whilst the latter disaggre-
gates the operational radar data to produce finer-scale rainfall details with higher spatial and temporal varia-
bility. In conventional, rainfall volume bias is regarded as the major error that causes the uncertainty of hy-
drological modelling (Einfalt et al., 2004), whilst the impact of spatial or temporal variability of rainfall is 
relatively minor and is often neglected. However, due to the highly-urbanised environment and small areas, 
urban catchments have proven to be sensitive to spatial and temporal variability (fluctuation) of rainfall in-
puts (Smith et al., 2007). The additional uncertainty caused by the downscaling process, in order to obtain 
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higher-resolution rainfall estimates, shall not be neglected in urban hydrological modelling. Therefore, a sys-
tematic analysis of the propagation of this type of uncertainty through urban hydrological modelling is car-
ried out in this work. 

2 COMBINED RAINFALL PROCESSING PROCEDURE 
A combined application of gauge-based adjustment and downscaling techniques is implemented in this work. 
The original 1-km and 5-min radar (Nimrod) data are first adjusted using the in situ rain gauge records. 
These adjusted 1-km radar estimates are then downscaled to street-scale (500/250/125 m) rainfall estimates, 
which are further used as inputs for urban flood modelling. According to the detailed review given by Wang 
et al. (2012b) of the state-of-the-art gauge-based adjustment techniques, the Bayesian-based merging method 
(Todini, 2001) is suggested to be a suitable tool for urban rainfall adjustment. For rainfall downscaling, the 
SD model (Semi-Deterministic cascade model) is employed, which is a discrete-in-scale cascade model de-
veloped based upon the theory of left-sided Multifractals (Mandelbrot et al., 1990) and shows promising re-
sults for urban rainfall applications (Wang et al., 2010; Liu, 2012). 

2.1 Gauge-based radar rainfall adjustment 
The Bayesian-based merging technique is a dynamic method intended for real-time applications (Todini, 
2001; Mazzetti, 2004). The first step of the method is to, for each time step, interpolate the real time rain 
gauge measurements into a synthetic rainfall field using the Block Kriging (BK) interpolation method. After 
that, the interpolated rainfall field is merged with the coincidental radar image using the Kalman filter algo-
rithm. The idea of the BK interpolation method is to synthesise a rainfall field whose semi-variogram curve 
is very similar to the semi-variogram curve empirically estimated from the associated point rainfall infor-
mation, where the semi-variogram curve is a function used to characterise the degree of spatial dependence 
of a spatial random field (e.g. a rainfall field). In other words, the information contained in the Block-Kriged 
rainfall fields can reflect the spatial structure of rainfall right above the ground; this can be very useful to ad-
just the spatial structure observed by radar, which is at a given elevation above the ground and could be hori-
zontally shifted by wind advection.  

The Kalman filter algorithm is then used and it comprises two steps: predict and update (Kalman, 1960). In 
the “predict” step, the a priori estimates and status at the current time step are firstly predicted based upon 
the estimates and status at the previous time step. These a priori estimates and status are then “updated” us-
ing real-time observations and the a posteriori estimates and status can be obtained by minimising the vari-
ance between the a priori estimates and the observations (termed “error variance”). In the method proposed 
by Todini (2001), the radar image represents the a priori estimates and the interpolated rainfall field consti-
tutes the observations to update the predicted estimates for obtaining the output field (a posteriori estimate) 
at each time step. 

2.2 Cascade downscaling 
The SD model used in this work to undertake spatial downscaling was firstly proposed by Wang et al. (2010) 
and is constructed based upon solving the generating equation (Hentschel and Procaccia, 1983):  
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This equation provides the theoretical framework to describe the multiplicative cascade process, which is 
widely used to simulate rainfall downscaling (Schertzer and Lovejoy 1987; Gupta and Waymire, 1993). In 
the equation, si and wi’s represent the fragmentation ratios that are respectively used to divide the scale (i.e. 
spatial resolution in this work) and the measure (i.e. rainfall rate) into b-adic sub-scales and sub-measures. 
These ratios are key parameters for the SD model and can be inversely determined by substituting the empir-
ical τ(q) curve (obtained from real data) into Eq. (1). The τ(q) curve is the Legendre Transform of the mul-
tifractal spectrum and is highly related to the statistical moment of the dataset being investigated; it is there-
fore a useful tool to capture the statistical characteristics of data (Cheng and Agterberg, 1996). 

Some results obtained from individual applications of these two techniques to the operational UK Met Office 
radar (Nimrod) data are shown in Figure 1. It can be seen that the original radar data (the grey dashed line in 
Figure 1 (left)) are largely improved by the Bayesian-based merging technique (the orange dashed-dotted 
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line), and the subsequent hydraulic output by using Bayesian-based adjusted rainfall estimates as input is 
very close to the flow depth observations (the purple round markers).  

The SD model was tested in a small urban area in London (Figure 1 (right)) to stochastically generate 1-km 
rainfall estimates from 8-km radar data. It can be observed that most of time the downscaled rainfall realisa-
tions (the grey area) well envelope the original 1-km radar data (the solid line) and perform sharp. This 
means that the SD model is able to well reproduce the statistical behaviours of rainfall observations in a 
small urban area. 

 

    

Figure 1 – Results of gauge-based adjusted rainfall estimates and the subsequent hydraulic outputs (left) and cascade-
based downscaled rainfall estimates over the area of Cranbrook catchment. 

 

3 CASE STUDY 
The case study used is the Cranbrook catchment in the UK. Located in the northeast of Greater London, this 
catchment has a rapid response to rainfall, which is typical of densely urbanised catchments overlaying Lon-
don clay. The drainage area of this catchment is approximately 900 ha.; the main water course is about 5.75 
km long, of which 5.69 km are piped or culverted. Four rainfall events, crossing the Greater London area in 
the period of Aug 2010 – Jan 2012, were selected to assess the combined rainfall processing implemented in 
this work and the associated uncertainty propagation. 

3.1 Measures 
A measure is defined, based upon the proportion of uncertainty of hydraulic outputs resulting from rainfall 
downscaling to that reduced by the bias adjustment, to quantify their contributions: 
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where Udownscaled (s, t) and Uadjusted (t) represents the downscaling and adjustment uncertainty components; 
they are respectively obtained from the following two dimensionless measures: 
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where Fmax (s, t) and Fmin (s, t) are respectively the maximum and minimum flow depths resulting from the 
stochastically downscaled rainfall estimates at the scale s and time step t; Fadjusted (t) and Funadjusted (t) are ad-
justed and original 1-km radar rainfall estimates. 
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3.2 Results and discussion 
The propagation of r(s, t) can be observed in Table I, which provides variation of the mean and max of r(s, t) 
based upon an event basis. The mean of r(s, t) in general decreases from up- to down-stream. This means that 
the impact of the downscaling process on flow simulation decreases from up- to down-stream (as drainage 
areas increase). However, it can be observed (in the 03/01/2012 and 05-06/06/2011 events) that for the case 
of very small drainage areas the uncertainty caused by the downscaling process exceeds that reduced by the 
adjustment.  

In addition, it can be seen that the values in the “Max” columns of Table I are in general larger than those in 
the “Mean” columns (except for the 03/01/2012 event). This means that, for the time points where the maxi-
mal adjustments were applied, the uncertainty caused by the downscaling process could increase more than 
usual. This is critical because, for radar rainfall estimates, the values that require larger adjustments are usu-
ally the peak or extreme values; this may dominate the performance of the subsequent hydraulic simulations.  
 

Table I – Summary statistics of the defined measure  r(s, t) at three selected pipes (pipe 1455.1, 463.1 and 
307.1, respectively located at the up-, mid- and down- streams of the Cranbrook catchment) for the selected 

four events. 

Event 
Scale  

(1 km - s) 

Up-stream (1455.1) 

(A* ≈ 57 ha.) 

Mid-stream (463.1) 

(A ≈ 480 ha.) 

Down-stream (307.1) 

(A ≈ 775 ha.) 

Mean Max† Mean Max Mean Max 

23/08/2011 

1 km – 500 m 37.74 59.68 13.42 46.10 10.81 31.52 

1 km – 250 m 43.89 103.03 16.23 62.82 12.50 31.34 

1 km – 125 m 37.59 62.32 17.34 52.21 11.63 20.00 

26/05/2011 

1 km – 500 m 47.66 67.35 24.04 56.59 21.61 32.89 

1 km – 250 m 53.14 76.62 30.79 73.13 28.45 36.78 

1 km – 125 m 64.14 72.34 28.28 60.35 24.53 39.98 

05-06/06/2011 
1 km – 500 m 105.47 113.33 49.09 57.43 33.28 39.78 

1 km – 250 m 135.40 190.98 60.53 70.27 41.57 44.85 

1 km – 125 m 170.46 219.50 72.26 98.61 46.49 62.45 

03/01/2012 

1 km – 500 m 100.15 93.73 31.18 18.87 19.76 16.75 

1 km – 250 m 118.29 105.62 37.31 25.74 24.72 19.17 

1 km – 125 m 124.20 102.58 32.54 17.72 19.95 13.35 
  † “Max” item represents the r(s, t) when maximum Uadjusted (t) occurs at each event 
 * “A” represents drainage area (in ha.) 

 

4 CONCLUSIONS 
In this paper, a combination of downscaling and adjustment techniques was carried out, which is a new rain-
fall processing procedure aiming to improve the suitability of the operational rainfall estimates for urban 
pluvial flood modelling. Two interesting major findings are summarised as follows: 

1. Impact of rainfall downscaling on flow simulation decreases from up- to down-stream. This indicates 
that the impact of the uncertainty caused by the downscaling process could be smoothed off when 
drainage areas increase; however this also means, for very small catchments, the uncertainty may 
dominate the performance of the subsequent hydraulic simulations. Therefore, it will not be ignored 
in urban hydrological applications. 

2. The combination of the adjustment and downscaling processes introduces additional uncertainty. 
This could be due to the difference of the background theories of these two techniques or insufficient 
rain gauge information. To reduce this additional uncertainty, new processing techniques are neces-
sary to have a better theoretical connection between these two processes; in addition, rain gauge data 
over larger areas can also improve the estimation of the parameters for the downscaling process. 
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In order to tackle the additional uncertainty introduced by the combination of two proposed techniques, a 
study of the variation of scaling features of adjusted and unadjusted rainfall estimates could usefully be con-
ducted to understand the impact of the adjustment process upon downscaled rainfall estimates. 
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