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Abstract Gauge-based radar rainfall adjustment techniques have been largely-used to improve the 
applicability of radar rainfall estimates to large-scale hydrological modelling. Their applicability to urban 
hydrology is however insufficient since these techniques were mostly developed based upon the Gaussian 
approximations and therefore smoothed off the so-called ‘singularity’ (or non-normality) that can be 
observed in the fine-scale rainfall structure. Overlooking the singularities could be critical because their 
distribution is highly consistent with that of local extreme magnitudes. This deficiency may cause 
tremendous errors in the subsequent urban hydrological modelling. In this paper, a methodology is proposed 
to incorporate an existing gauge-based radar rainfall adjustment technique with the local singularity analysis, 
aiming for improving the applicability of existing adjustment techniques at urban scales. Three historical 
storm events recorded by a flow survey campaign in 2011 in Edinburgh (UK) were selected as case study to 
evaluate the proposed methodology. The result suggests that the proposed ‘singularity-sensitive’ 
methodology can in general better re-construct the non-normality in local rainfall structure and at the same 
time preserve the advantage of the original adjustment techniques of generating unbiased estimates.  
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INTRODUCTION 

Traditionally, urban hydrological applications relied mainly upon rain gauge data as input as these 
provide accurate point rainfall estimates near the ground surface. However, they cannot capture the 
spatial variability of rainfall, which has a significant impact on the urban hydrological system and 
thus on the modelling of urban pluvial flooding. Thanks to the development of radar technology, 
weather radar has been playing an increasingly important role in urban hydrology. Radars can 
survey large areas and better capture the spatial variability of the rainfall, thus improving the short 
term predictability of rainfall and flooding. However, the accuracy of radar measurements is in 
general insufficient, particularly in the case of extreme rainfall magnitudes. This has a tremendous 
effect on the subsequent hydraulic model outputs. 

In order to improve the accuracy of radar rainfall estimates while preserving their spatial 
description of rainfall fields, it is possible to dynamically adjust them based on rain gauge 
measurements. Studies on this subject have been carried out over the last few years, though most 
of them focus on the hydrological applications at large scales. A couple of recent research works 
have examined the applicability of these adjustment techniques to urban-scale hydrological 
applications and concluded that these techniques can effectively reduce rainfall bias, thus leading 
to improvements in the reproduction of hydraulic outputs (Wang et al., 2013). However, 
underestimation of storm peaks can still be seen after adjustment and this is particularly significant 
in the case of small drainage areas and for extreme rainfall magnitudes. This may be due to the fact 
that the underlying adjustment techniques, mainly based upon 1st or 2nd order (statistical-) 
moment approximations, cannot properly cope with the non-normality observed in urban scale 
applications. In fact, it is often the case that the radar image captures striking local extremes (albeit 
the actual rainfall depths may be inaccurate), but these structures are lost or smoothened through 
the merging process. These striking local extremes correspond to singularity points within the 
rainfall field and can be identified through a local singularity analysis (Cheng et al., 1994; 
Schertzer and Lovejoy, 1987).  

With the purpose of improving this aspect, a methodology has been developed which identifies the 
local extremes or ‘singularities’ of radar rainfall fields and preserves them throughout the merging 
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process. A preliminary test of this methodology in an urban area in London (Wang and Onof, 
2013a, 2013b) has demonstrated that the original Bayesian data merging technique (Todini, 2001) 
could be effectively improved by incorporating this singularity analysis. In this work, this 
incorporation has been further used to reconstruct a number of storm events observed in an urban 
catchment in Edinburgh during the Summer of 2011 and for which high density rainfall and flow 
data are available. 

EXPERIMENTAL SITE AND DATA SET 

As aforementioned, the proposed methodology was originally developed using the radar and 
raingauge data over the Maida Vale catchment (London) in June 2009. However, due to the 
confidential reason and lack of flow measurements, its impact on urban hydrological modelling 
could not be evaluated in this catchment. Therefore, in the context of this paper, the dataset of the 
Maida Vale catchment will be used merely for demonstrating the intermediate results in the 
development of the methodology, and the description of the catchment and the dataset used will 
not be given in this paper. For readers who are interested in the details, please find the link in 
(Wang and Onof, 2013b). 

An alternative catchment in Portobello (Edinburgh area) was used in this paper as case study due 
to the completeness of rainfall and flow data. A full-scale test of rainfall estimation and the 
subsequent hydrological modelling was carried out in this catchment. A description of the 
catchment and the local monitoring data (including raingauge, flow and depth data) available and 
used in this study is next provided.  

In addition to the local monitoring data, the experimental catchment is within the coverage of C-
band radars operated by the UK Met Office. Radar rainfall estimates are available through the 
British Atmospheric Data Centre (BADC) with spatial and temporal resolutions of 1 km and 5 min, 
respectively. These estimates correspond to a quality controlled and multi-radar composite product 
generated with the UK Met Office Nimrod system, which includes corrections for the different 
errors inherent to radar rainfall measurements (Golding, 1998; Harrison et al., 2000). 

Portobello catchment (Edinburgh, UK) 

Catchment description: Portobello is a beach town located 5 km to the east of the city centre of 
Edinburgh, along the coast of the Firth of Forth, in Scotland (Figure 1a). The catchment is 
predominantly urban and has a drainage area of approximately 53 km2. The storm water drainage 
system is mainly separate and drains from the south-west to the north-east (towards the sea). 

Hydraulic model: The model of the sewer system of the Portobello catchment (Figure 1b) is setup 
in InfoWorks CS and was verified in 2011 based on the medium term flow survey data described 
below (using solely raingauge data as input). It comprises 2,916 nodes and 2,906 conduits. 
Rainfall is applied to the model through subcatchments and runoff is estimated using the NewUK 
model. 

Local monitoring data available for this catchment: The only local monitoring data available 
for this catchment is that of the medium term flow survey used for the verification of the model. 
The flow survey was carried out between April and June 2011 and comprises data from 12 
raingauges and 28 flow gauges (Figure 1b). Radar rainfall estimates (at 1 km and 5 min resolution) 
for the same period of the flow survey were obtained from the BADC. 

Selected storm events  

During the flow survey monitoring period, three relatively large storms were recorded and were 
used for the verification of the model. The same three storm events were used in this study to test 
the gauge based adjustment methods. The dates and main characteristics of these events are 
summarised in Table 1. 
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called mean-field bias correction (MFB), were also included in the comparison because it has been 
a widely-used correction procedure used by many meteorological services (Goudenhoofdt and 
Delobbe, 2009; Harrison et al., 2000). This adjustment is implemented by comparing the 
summations of the RG and the co-located RD grid rainfall estimates over a specific area (i.e. the 
Portobello catchment area in this paper) and duration (i.e. one hour) to obtain a sample bias ratio 
(i.e. B = ΣRG/ΣRD). This ratio is then multiplied back to each radar grid estimate to ensure that 
the mean of RD rainfall estimates is the same as (or similar to) that of the RG measurements.    

In the following, features of the rainfall estimates resulting from different interpolation and 
adjustment techniques are firstly presented and discussed. Then, the hydraulic outputs resulting 
from each rainfall input are presented, inter compared and discussed. Due to space constraints, 
only the results for Storm 1 are presented and discussed in detail. At the end of this section the 
results obtained for Storms 2 and 3 are briefly discussed and general conclusions are formulated. 
Results from Storm 1 were chosen as it is the most intense storm analysed for this catchment and, 
as such, it is the most relevant from an urban pluvial flood modelling perspective. 

Rainfall estimates 

The features of the rainfall estimates generated by different techniques were characterised by 
comparing them with the local RG measurements, in terms of areal average and individual-site 
time series. In Figure 4 (left), the result is presented of a direct comparison of areal average RG 
intensities versus areal average BK, RD and adjusted estimates’ intensities at each time step 
throughout the whole Storm 1 period. As expected, BK estimates are in good agreement with RG 
estimates. With regards to RD estimates, it can be seen that they tend to overestimate small rainfall 
rates and underestimate the peak intensities. This tendency can be explained by the fact that the Z-
R conversion that is used to convert radar reflectivity to rainfall rate has to statistically 
compromise to the range of rainfall rates that frequently occur (whereas the occurrence of very 
small and large intensities is relatively rare). It can be seen that both sources of error in RD 
estimates can be largely improved through adjustment techniques. Promising results are obtained 
from the BAY and, in particular, from the SIN merging methods, which are able to well reproduce 
low as well as high rainfall rates. As compared to the RD estimates, the MFB method does not 
seem to provide significant improvements in this respect and its performance is especially poor at 
higher intensities (which are of outmost importance in the modelling and forecasting of urban 
pluvial flooding). 

Similar comparisons were conducted at each RG location, and the associated statistics are 
summarised in Figure 4 (middle) and (right). The simple linear regression analysis was applied to 
each pair of RG measurements and the co-located grid estimates obtained from different gauge-
based interpolation and adjustment techniques. The result of these regression analyses can be 
evaluated in terms of β (regression coefficient) an R2 (coefficient of determination). These two 
statistics provide the measures of how well RG observations are replicated by the RD/BK/merged 
rainfall estimates at each gauging station. The R2 measure ranges from 0 to 1, describing how 
much of the observed dispersion is explained by the modelled one. However, the systematic bias 
(under- or over-estimation) of the modelled estimates cannot be reflected by this measure. The 
slope of the simple linear regression analysis (i.e. β) was therefore employed to provide additional 
information to cope with the drawback of R2 measures. 

As expected, the BK estimates in general possess the highest R2 values since the RD information 
was not taken into account (Figure 4 (right)). However, from the distribution of β values of the BK 
estimates, one can find that the whole box and the whiskers are below the axis of unity (Figure 4 
(middle)). A similar result can be found in the BAY estimates, where high R2 values are observed 
and most of the β values are below one. This indicates that both BK and BAY estimates tend to 
systematically underestimate the RG rainfall intensities at each gauging site. This may be caused 
by the underlying Gaussian approximation, which tends to smooth off some local extreme 
magnitudes. 



 

The RD
rainfal
ground
RG est
the eff
but ful

Althou
‘indivi
of the 
This d
inherit
the SI
singula
estima
under-
singula
magnit

The fe
preserv
RD inf
be fou
hydrol

Figure 
of insta
estimat
location
 
Hydra

In Fig
hydrog
downs
presen
coeffic
simula
compu
the ob
simula
the m
overes

From F

0

2

4

6

8

10

12

14

0

B
K
/R
D
/A
d
ju
st
e
d
 R
ai
n
 R
at
e
 (
m
m
/h
r)

Rainfa

RD

D estimates 
ll information
d raingauge m
timates can b
fect is very l
lly follows th

ugh the ‘are
idual-site’ be
R2 values o

difference in
t more featur
IN methodo
arities are ex

ates is approx
- or over-esti
arity recover
tudes (or the

eature analys
ves the ‘area
formation in
und in the 
logical outpu

4: Compariso
antaneous are
tes; (middle an
n. 

aulic output

gure 5 (left)
graphs from 
stream parts 
nted which sh
cient (NSE) 
ated depths a
uted by divid
served one (

ation results 
model under
stimation of t

Figure 5 it c

2 4 6 8

RG Rain Rate (m

ll estimates comparison: P

D BK MFB

possess the 
n at a certain
measuremen
be still obser
imited since 
he spatial stru

eal average’
ehaviour is v
f the SIN es

ndicates that,
res from the 
ology, in wh
xtracted. In 
ximately sym
imation is o
ry of the prop
e local singul

sis of differe
al average’ b
nto the data m

SIN estima
ut is further e

ons of RG data
eal RG vs. R
nd right) Box

s 

), a selectio
different lo
of the catch

how the distr
(Nash and S
and flows a

ding the diffe
(Opeak). This 
can reproduc

restimates th
the peaks. M

can be seen t

8 10 12 14

m/hr)

Portobello Storm 1

BAY SIN

lowest R2 an
n elevation ab
nts. Nonethel
rved. The M
this method

ucture of RD

 behaviours
very differen
stimates is so
, as compar
RD estimate
hich the re
addition, it 

mmetric to t
bserved in t
posed SIN m
lar quantities

ent rainfall e
ehaviour of t
merging, and
ates. The im
evaluated in t

 
a and differen

RD (red mark
xplots of β an 

n is present
ocations with
hment) for S
ribution of th
Sutcliffe, 197
at the differe
erence of the 
measure giv

ce the true p
he observed

Moreover, the 

that, even th

 
nd β values.
bove the gro
less, a certai
FB adjustme

d uses merely
D estimates. 

s of BAY a
nt from the B
omewhere be
red to the o
es. This is co
liability of 
can be foun

the axis of u
the SIN estim

methodology
s) that were s

estimates sug
the original 
d therefore s
mpact of th
the following

nt rainfall estim
kers)/BK (blu
R2 for the RG

ted of three
hin the catc
Storm 1. In 
he performan
70) and relat
ent gauging 
simulated an

ves an estima
peak flows an
d peak flow
closer RE is

hough the RG

 This is exp
ound, which i
in degree of 
ent can sligh
y the mean-f

and SIN est
BAY’s. It can
etween that 
riginal BAY
onsistent wit
the origina

nd that the d
unity. This m
mates. This 
and the re-co

smoothed off

ggests that t
BAY, but at

stronger spat
hese differen
g section.  

mates for Port
e)/MFB (ligh

G data vs. diff

e observed 
chment (resp

addition, in
nce measures
tive error (R
stations for 

nd the observ
ate of how w
nd depths. N
w/depth, w
s to zero, the 

G and RD to

ected becaus
is unlikely to
the similarit

htly increase
field estimate

timates are 
n be found t
of the BAY 

Y estimates, 
th the underl
l RD data 

distribution o
means no sig
could be du
onstruction o
f by the origi

the proposed
t the same tim
tial and temp
nt features o

tobello’s Storm
ht blue)/BAY 
ferent rainfall 

vs. simulate
pectively in 
n Figure 5 (
s, i.e., Nash-

RE) in peak f
r Storm 1. T
ved flow pea

well, in terms
Negative RE v
while positiv

better. 

otals are sim

se RD data p
o be the same
ty between R
their similar
e from the R

similar, the
that the distr

and RD est
the SIN es

lying assump
is improve

of β values 
gnificant syst
ue to the pro
of the local e
inal BAY me

d SIN metho
me introduce
poral variatio
on the subs

m 1: (left) Sca
(pink)/SIN (

estimates at e

ed flow and
the up-, mi

(right) boxpl
-Sutcliffe eff
flow output, 
The RE mea
aks (Speak - O
s of magnitu
values indica

ve values i

milar (RD is s

7

provide 
e as the 
RD and 
rity, but 
RG data 

e SIN’s 
ribution 
timates. 
timates 

ption of 
d after 
of SIN 
tematic 

ocess of 
extreme 
ethod.  

odology 
es more 
ons can 
sequent 

atterplot 
(yellow) 
each RG 

d depth 
id- and 
lots are 
ficiency 

for the 
asure is 

Opeak) by 
ude, the 
ate that 
indicate 

slightly 



 8 

higher) for Storm 1 (Table 1) , the RD associated hydraulic outputs consistently underestimate 
flow and depth peaks, with the degree of underestimation changing from location to location and 
possibly increasing in the direction of flows within the catchment (i.e. larger underestimations are 
observed in gauging locations further downstream, as compared to upstream locations). The 
underestimation in hydraulic outputs, in spite of the small difference of the RG and RD totals, can 
be explained by the fact that the RD estimates cannot well reproduce high rainfall rates (Figure 4). 
This suggests that not only is it important to get the areal total rainfall accumulations right, but 
accurately capturing the peak rainfall intensities is also of outmost importance in order to 
appropriately reproduce the dynamic behaviour of the hydrological system and, in particular, the 
flow and depth peaks.  

The MFB adjustment was found to provide some improvement over the original RD estimates; 
however, it is still insufficient to effectively reproduce peak rainfall intensities (Figure 4) and the 
associated flow and depth peaks (Figure 5 (left)). This confirms the fact that more dynamic 
adjustment radar rainfall adjustment methods which can better account for the spatial variability in 
the rainfall fields are required for urban-scales applications (rather than simple mean-field bias 
adjustments).  

In general and as would be expected, the hydraulic outputs obtained with the BK estimates are 
very similar to the RG ones, with BK outputs sometimes performing better than the original RG 
ones. A striking difference between BK and RG hydraulic outputs and which is worth analysing 
can be observed in the hydrographs of gauging station 23 (Figure 5 (left, bottom)): it can be seen 
that the RG outputs largely overestimate the observed peak depth, while the simply interpolated 
BK rainfall input already leads to much more sound hydraulic results which are in better 
agreement with the observations. This confirms that accounting for the spatial variability of 
rainfall fields, even through simple kriging interpolation, could lead to significant benefits in the 
modelling.   

The BAY and SIN outputs appear to be similar to the BK ones (and better than the original RD 
outputs), with the former (i.e. BAY and SIN) showing slightly more dynamic and realistic flow 
and depth patterns and with the SIN outputs performing better overall in terms of effectively 
reproducing peak depths and flows. The better performance of the SIN hydraulic outputs in this 
respect is clearly illustrated by the RE boxplots (Figure 5 (right, bottom)), where the median of the 
SIN associated RE for peak depths and flows is closer to zero and the dispersion of the results is 
smaller as compared to that of other hydraulic outputs, including the RG ones. An interesting 
example which also illustrates the potential benefits of the SIN method in terms of better capturing 
storm extremes can be found in gauging station 1: at this location the SIN methodology is the only 
one capable of generating a higher flow depth peak which is in better agreement with the 
observations (Figure 5 (left, top)).  

From the results of Storm 1 it can be concluded that all adjustment methods can improve the 
applicability of the original RD rainfall estimates to urban hydrological applications, although the 
degree of improvement provided by each adjustment method is different. Overall, the BAY and 
SIN rainfall estimates lead to significantly better simulation results than the MFB adjusted 
estimates, with the SIN estimates performing particularly well at reproducing peak depths and 
flows.  

In general, the results obtained for Storm 3 are in good agreement with those obtained for Storm 1. 
However, the results of Storm 2 are somehow different: in this event the RD accumulations were 
larger than the RG ones (see Table 1) and the RD peak rainfall intensity was very similar to the 
RG one (though this was a mild storm event with maximum observed rainfall rates in general low). 
This led to unusual results in which at many gauge stations the RD estimates resulted in better 
hydraulic outputs (i.e. closer to the observations) than the original RG ones. For this event the 
benefits of the merged rainfall estimates as compared to the original RD estimates in terms of 
hydraulic outputs are not evident (some improvements are achieved in NSE, but these are rather 
minor). Nonetheless, in this as well as in the other storms, there are many sources of uncertainty 
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